首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of ethanol on fermentation by Pachysolen tannophilus was studied. When xylose utilization rate was 80%, ethanol concentration began to decline. Fermentation of P. tannophilus was affected by ethanol addition in the beginning of fermentation; average xylose consumption rate was 0.065 g·l−1·h−1, and maximum specific growth rate was 0.07 h−1 at 28 g·l−1 ethanol, comparing with the average xylose consumption rate of 0.38 g·l−1·h−1 and maximum specific growth rate of 0.14 h−1 in fermentation with no ethanol addition; P. tannophilus stopped growth at 40 g·l−1 ethanol. When the initial ethanol concentration was 30 g·l−1, the addition of glucose in xylose media made the growth of P. tannophilus better, and the most favorable glucose concentration was 15 g·l−1 with the highest biomass of 1.51 g·l−1 as compared with that of 0.95 g·l−1 in pure xylose media.  相似文献   

2.
On the basis of large-scale coupled cluster calculations including connectedz triple substitutions in a perturbative way, the geometrical parameters of the D 3 h saddle point of the Walden inversion reaction Cl + CH3Cl′→ ClCH3 + Cl′ are predicted to be R s (C—Cl) = 2.301 ? and r s (C—H) = 1.069 ?. The barrier height with respect to the reactants is recommended to be 11.5 ± 1.0 kJ mol−1. Connected triple substitutions lower the barrier height by almost a factor of 2, but have very little influence on the geometric structure of the saddle point. Received: 26 June 1998 / Accepted: 15 July 1998 / Published online: 28 September 1998  相似文献   

3.
The ability of Xanthomonas campestris to convert glucose and xylose to xanthan and the structure of xanthan derived from the glucose/xylose mixture media are important when the lignocelluloses hydrolysate was used in xanthan production. In this paper, the features related to xanthan fermentation in the glucose/xylose mixture media and the structures of xanthan derived from the mixture media were studied. Glucose was the preferred carbon source to produce xanthan while xylose was also utilized with a very low consumption rate. When the fraction of glucose decreased from 100% to 25%, the glucose consumption rate and xanthan production rate reduced from 0.44 g L−1 h−1 to 0.25 g L−1 h−1 and 0.21 g L−1 h−1 to 0.04 g L−1 h−1 respectively while xylose was consumed at a very stable rate (0.053–0.060 g L−1 h−1). On the other hand, when the xylose fraction increased from 0% to 50%, pyruvate and acetate content of xanthan increased from 2.43% to 3.78% and 2.55% to 7.05%. The existence of xylose also led to higher average molecular weight. Therefore, it could be concluded that xylose was not efficiently utilized by X. campestris to produce xanthan. The concentration of glucose rather than the total sugar was the main factor to determine the xanthan production. But xylose was helpful to improve the quality of xanthan.  相似文献   

4.
Summary.  Hydrazinium(+2) fluoroarsenate(III) fluoride was prepared by the reaction of hydrazinium(+2) fluoride and liquid arsenic trifluoride. N2H6AsF4F is stable at 273 K, but decomposes slowly at room temperature. N2H6AsF4F crystallizes in the orthorhombic space group Pnn2 with a = 774.0(2) pm, b = 1629.2(4) pm and c = 436.6(1) pm; V = 0.5506(3) nm3, Z = 4 and d c  = 2.461 g cm−3. The structure consists of N2H6 2+ cations, AsF4 anions, and F anions and is interconnected by a hydrogen bonding network. Distorted trigonal-bipyramidal AsF4 units are very weakly interconnected and form chains along the b axis. Bands in the Raman spectrum are assigned to the vibrations of N2H6 +2 cations and AsF4 anions. Corresponding author. E-mail: adolf.jesih@ijs.si Received April 18, 2002; accepted July 15, 2002  相似文献   

5.
The thermochemical properties ΔH o n , ΔS o n , and ΔG o n for the hydration of sodiated and potassiated monosaccharides (Ara = arabinose, Xyl = xylose, Rib = ribose, Glc = glucose, and Gal = galactose) have been experimentally studied in the gas phase at 10 mbar by equilibria measurements using an electrospray high-pressure mass spectrometer equipped with a pulsed ion beam reaction chamber. The hydration enthalpies for sodiated complexes were found to be between −46.4 and −57.7 kJ/mol for the first, and −42.7 and −52.3 kJ/mol for the second water molecule. For potassiated complexes, the water binding enthalpies were similar for all studied systems and varied between −48.5 and −52.7 kJ/mol. The thermochemical values for each system correspond to a mixture of the α and β anomeric forms of monosaccharide structures involved in their cationized complexes.  相似文献   

6.
 Solubility isotherms in the CuBr2MBr−H2O (M + = Li+, Na+, Cs+) systems at 298.15 K were measured. The results together with other available literature data for copper chloride and bromide systems were treated by hydration analysis, and comparative discussion of ionic processes taking place in the respective saturated solutions was performed.  相似文献   

7.
A kind of erbium hexacyanoferrate (ErHCF)-modified carbon ceramic electrodes (CCEs) fabricated by mechanically attaching ErHCF samples to the surface of CCEs derived from sol–gel technique was proposed. The resulting modified electrodes exhibit well-defined redox responses with the formal potential of +0.215 V [vs saturated calomel electrode (SCE)] at a scan rate of 20 mV s−1 in 0.5 M KCl (pH 7) solution. The voltammetric characteristics of the ErHCF-modified CCEs were investigated by voltammetry. Attractively, the ErHCF-modified CCEs presented good electrocatalytic activity with a marked decrease in the overvoltage about 400 mV for l-cysteine oxidation. The calibration plot for l-cysteine determination was linear at 5.0 × 10−6–1.3 × 10−4 M with a linear regression equation of I(A) = 0.558 + 0.148c (μM) (R 2 = 0.9989, n = 20), and the detection limit was 2 × 10−6 M (S/N = 3). At last, the ErHCF-modified CCEs were used for amperometric detection of l-cysteine in real samples.  相似文献   

8.
In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L−1 of NaOH (372 ± 12 and 355 ± 37 mg gglucan−1) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15–30 min) and microwave power (600–900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU gCAB-M−1) increased glucose concentration to 15 g L−1. The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L−1 and 1.41 g L−1 h−1, respectively.  相似文献   

9.
Summary.  Solubility isotherms in the CuBr2MBr−H2O (M + = Li+, Na+, Cs+) systems at 298.15 K were measured. The results together with other available literature data for copper chloride and bromide systems were treated by hydration analysis, and comparative discussion of ionic processes taking place in the respective saturated solutions was performed. Corresponding author. E-mail: jitka@prfdec.natur.cuni.cz Received August 6, 2002; accepted (revised) November 29, 2002 Published online April 3, 2003  相似文献   

10.
This article demonstrates the potential of encapsulated, engineered Lactococcus lactis as a vehicle for the oral delivery of therapeutic proteins. Using alginate-poly-l-lysine-alginate membrane-encapsulated L. lactis engineered to secrete the reporter protein Staphylococcal aureus nuclease, we show comparable viability and protein secretion between free and immobilized cells. After 12 h, microcapsules with a cell density of 4.8 × 105 colony forming unit (CFU) ml−1 grew to 2.2 × 108 CFU ml−1 and released 0.24 arbitrary unit (AU) ml−1 of nuclease, producing similar results as free cells, which grew from 3.4 × 105 to 1.9 × 108 CFU ml−1 and secreted 0.21 AU ml−1 of nuclease. Moreover, encapsulated cells at a density of 4.4 × 107 CFU ml−1 grew to 2.2 × 1010 CFU ml−1 in 12 h and secreted 15.3 AU ml−1 of nuclease although 3.1 × 107 CFU ml−1 of free cells reached only 2.3 × 109 CFU ml−1 and released 5.6 AU ml−1 of nuclease. We also show the sustained stability of the microcapsules during storage at 4°C over 8 weeks.  相似文献   

11.
To investigate the production of cellulases and xylanases from Penicillium echinulatum 9A02S1, solid-state fermentation (SSF) was performed by using different ratios of sugar cane bagasse (SCB) and wheat bran (WB). The greatest filter paper activity obtained was 45.82 ± 1.88 U gdm−1 in a culture containing 6SCB/4WB on the third day. The greatest β-glucosidase activities were 40.13 ± 5.10 U gdm−1 obtained on the third day for the 0SCB/10WB culture and 29.17 ± 1.06 U gdm−1 for the 2SCB/8WB culture. For endoglucanase, the greatest activities were 290.47 ± 43.57 and 276.84 ± 15.47 U gdm−1, for the culture 6SCB/4WB on the fourth and fifth days of cultivation, respectively. The greatest xylanase activities were found on the third day for the cultures 6SCB/4WB (36.38 ± 5.38 U gdm−1) and 4SCB/6WB (37.87 ± 2.26 U gdm−1). In conclusion, the results presented in this article showed that it was possible to obtain large amounts of cellulases and xylanases enzymes using low-cost substrates, such as SCB and WB.  相似文献   

12.
To obtain a high level expression of phytase with favorable characteristics, a codon-optimized phytase gene from Citrobacter freundii was synthesized and transferred into Pichia pastoris. Small-scale expression experiments and activity assays were used to screen positive colonies. After purified by Ni2+–NTA agarose affinity column, the characterizations of the recombinant phytase were determined. The recombinant phytase (r-phyC) had two distinct pH optima at 2.5 and 4.5 and an optimal temperature at 50 °C. It retained more than 80% activity after being incubated under various buffer (pH 1.5–8.0) at 37 °C for 1 h. The specific activity, Km, and Vmax values of r-phyC for sodium phytate were 2,072 ± 18 U mg−1, 0.52 ± 0.04 mM, and 2,380 ± 84 U mg−1 min−1, respectively. The enzyme activity was significantly improved by 1 mM of K+, Ca2+, and Mg2+. These characteristics contribute to its potential application in feed industry.  相似文献   

13.
Stable, yellow anodic films of parathiocyanogen (SCN) x were formed on a platinum electrode from 2.8 M KSCN in methanol at 45 °C at a constant current of 20–40 mA cm−2 for 15–30 min. Loosely bound orange crystals of a more amorphous character were removed by rinsing to leave an adherent yellow film with sharp Raman bands under 647.1 nm laser excitation at 627 cm−1 (vCS), 1152 cm−1 and 1236–1261 cm−1 (vNN and vCN). The lack of electroactivity and short-lived photocurrents pointed to an insulating film at potentials up to 1.0 V (SHE). At more positive potentials, longer-lasting photocurrents were obtained, consistent with breakdown of the insulating film. XPS scans confirmed N:C:S ratios close to 1:1:1, with a deficiency of S of some 10% due to S lost as sulfate at the film surface. Oxidation of SeCN in neutral aqueous solution led to the formation of a less-stable orange paraselenocyanogen film with a Raman band at 1256–1267 cm−1, which decomposed within a day to grey selenium. Received: 12 December 1997 / Accepted: 23 March 1998  相似文献   

14.
The pH dependence of an anionic surfactant, sodium N-dodecanoylsarcosinate (SLAS), has been studied by measuring interfacial tension, fluorescence, dynamic light scattering, etc., in aqueous solutions with phosphate and borate buffers. The interfacial tension (γ) of SLAS decreases remarkably with a pH decrease and is constant at pH > 7.3. The observed values for the critical micelle concentration (cmc) and the surfactant concentration at which its γ value is reduced by 20 mN/m from that of pure water (C 20) decrease with a pH decrease, while those also become constant at pH > 6.5 and >7.3, respectively. On the other hand, the interfacial excess of SLAS increases at pH < 7.3. These interfacial behaviors have been further investigated by the addition of Tl+ which replaces Na+ of SLAS. The observed γ values of LAS with the different counter cations are in the order of H+ < Tl+ < Na+. In order to reveal aggregation properties of SLAS, the aggregation number (N agg), the micropolarity, the hydrodynamic radius (R h) of micelle, and the fluorescence anisotropy of Rhodamine B (r) have been evaluated at various pHs. The N agg value shows a decreasing tendency with a pH increase. The I 1/I 3 ratio and the R h values do not strongly depend on pH. The r value decreases until pH 7 and remains constant at pH > 7.0. These interfacial and micelle properties have been discussed in detail considering the electrostatic interaction and the molecular structures of the hydrophilic headgroup.  相似文献   

15.
Butyric acid has many applications in chemical, food, and pharmaceutical industries. In the present study, Clostridium tyrobutyricum ATCC 25755 was immobilized in a fibrous-bed bioreactor to evaluate the performance of butyrate production from glucose and xylose. The results showed that the final concentration and yield of butyric acid were 13.70 and 0.46 g g−1, respectively, in batch fermentation when 30 g L−1 glucose was introduced into the bioreactor. Furthermore, high concentration 10.10 g L−1 and yield 0.40 g g−1 of butyric acid were obtained with 25 g L−1 xylose as the carbon source. The immobilized cells of C. tyrobutyricum ensured similar productivity and yield from repeated batch fermentation. In the fed-batch fermentation, the final concentration of butyric acid was further improved to 24.88 g L−1 with one suitable glucose feeding in the fibrous-bed bioreactor. C. tyrobutyricum immobilized in the fibrous-bed bioreactor would provide an economically viable fermentation process to convert the reducing sugars derived from plant biomass into the final bulk chemical (butyric acid).  相似文献   

16.
The electrocatalytic activity of a Prussian blue (PB) film on the aluminum electrode by taking advantage of the metallic palladium characteristic as an electron-transfer bridge (PB/Pd–Al) for electrooxidation of 2-methyl-3-hydroxy-4,5-bis (hydroxyl–methyl) pyridine (pyridoxine) is described. The catalytic activity of PB was explored in terms of FeIII [FeIII (CN)6]/FeIII [FeII (CN)6]1− system. The best mediated oxidation of pyridoxine (PN) on the PB/Pd–Al-modified electrode was achieved in 0.5 M KNO3 + 0.2 M potassium acetate of pH 6 at scan rate of 20 mV s−1. The mechanism and kinetics of the catalytic oxidation reaction of PN were monitored by cyclic voltammetry and chronoamperometry. The results were explained using the theory of electrocatalytic reactions at chemically modified electrodes. The charge transfer-rate limiting reaction step is found to be a one-electron abstraction, whereas a two-electron charge transfer reaction is the overall oxidation reaction of PN by forming pyridoxal. The value of α, k, and D are 0.5, 1.2 × 102 M−1 s−1, and 1.4 × 10−5 cm2 s−1, respectively. Further examination of the modified electrodes shows that the modifying layers (PB) on the Pd–Al substrate have reproducible behavior and a high level of stability after posing it in the electrolyte or Pyridoxine solutions for a long time.  相似文献   

17.
There is a lack of fundamental knowledge about the scale up of biosurfactant production. In order to develop suitable technology of commercialization, carrying out tests in shake flasks and bioreactors was essential. A reactor with integrated foam collector was designed for biosurfactant production using Bacillus subtilis isolated from agricultural soil. The yield of biosurfactant on biomass (Y p/x), biosurfactant on sucrose (Y p/s), and the volumetric production rate (Y) for shake flask were obtained about 0.45 g g−1, 0.18 g g−1, and 0.03 g l−1 h−1, respectively. The best condition for bioreactor was 300 rpm and 1.5 vvm, giving Y x/s, Y p/x, Y p/s, and Y of 0.42 g g−1, 0.595 g g−1, 0.25 g g−1, and 0.057 g l−1 h−1, respectively. The biosurfactant maximum production, 2.5 g l−1, was reached in 44 h of growth, which was 28% better than the shake flask. The obtained volumetric oxygen transfer coefficient (K L a) values at optimum conditions in the shake flask and the bioreactor were found to be around 0.01 and 0.0117 s−1, respectively. Comparison of K L a values at optimum conditions shows that biosurfactant production scaling up from shake flask to bioreactor can be done with K L a as scale up criterion very accurately. Nearly 8% of original oil in place was recovered using this biosurfactant after water flooding in the sand pack.  相似文献   

18.
A 66-kDa thermostable family 1 Glycosyl Hydrolase (GH1) enzyme with β-glucosidase and β-galactosidase activities was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family. N-terminal and partial internal amino acid sequences showed significant resemblance to plant GH1 enzymes. Kinetic studies showed that enzyme hydrolyzed p-nitrophenyl β-d-glucopyranoside (pNP-Glc) with higher efficiency (K cat/K m = 2.27 × 104 M−1 s−1) as compared to p-nitrophenyl β-d-galactopyranoside (pNP-Gal; K cat/K m = 1.15 × 104 M−1 s−1). The optimum pH for β-galactosidase activity was 4.8 and 4.4 in citrate phosphate and acetate buffers respectively, while for β-glucosidase it was 4.6 in both buffers. The activation energy was found to be 10.6 kcal/mol in the temperature range 30–65 °C. The enzyme showed maximum activity at 65 °C with half life of ~40 min and first-order rate constant of 0.0172 min−1. Far-UV CD spectra of enzyme exhibited α, β pattern at room temperature at pH 8.0. This thermostable enzyme with dual specificity and higher catalytic efficiency can be utilized for different commercial applications.  相似文献   

19.
Monomeric extracellular endoglucanase (25 kDa) of transgenic koji (Aspergillus oryzae cmc-1) produced under submerged growth condition (7.5 U mg−1 protein) was purified to homogeneity level by ammonium sulfate precipitation and various column chromatography on fast protein liquid chromatography system. Activation energy for carboxymethylcellulose (CMC) hydrolysis was 3.32 kJ mol−1 at optimum temperature (55 °C), and its temperature quotient (Q 10) was 1.0. The enzyme was stable over a pH range of 4.1–5.3 and gave maximum activity at pH 4.4. V max for CMC hydrolysis was 854 U mg−1 protein and K m was 20 mg CMC ml−1. The turnover (k cat) was 356 s−1. The pK a1 and pK a2 of ionisable groups of active site controlling V max were 3.9 and 6.25, respectively. Thermodynamic parameters for CMC hydrolysis were as follows: ΔH* = 0.59 kJ mol−1, ΔG* = 64.57 kJ mol−1 and ΔS* = −195.05 J mol−1 K−1, respectively. Activation energy for irreversible inactivation ‘E a(d)’ of the endoglucanase was 378 kJ mol−1, whereas enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) of activation at 44 °C were 375.36 kJ mol−1, 111.36 kJ mol−1 and 833.06 J mol−1 K−1, respectively.  相似文献   

20.
The binding of Gd3+ to two carboxylated polyglycidyl methacrylate latices was investigated. The latices differed in size (60 and 140 nm for CL6 and CL3, respectively) and surface charge density. The Gd3+ concentration in aqueous suspension was determined using an arsenazo (III) assay. Using 153Gd3+, the bound amount was determined directly. Because of the high binding affinity, ligand depletion became evident. The binding was pH dependent, investigated in buffer solutions not influencing the arsenazo (III) assay. Optimal binding occurs by formation of sodium salts of the carboxylic groups and replacement of Na+ and H+ by Gd3+. The dissociation constants of the particles were k D ≈ 5 × 10−5 mol/L (CL3) and 10−4 mol/L (CL6), without cooperativity (Hill plot). Colloidal stability was investigated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号