首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we presented experimental results concerning on the laser characteristics of two microchip lasers emitting in the 2 μm range, Tm:Ho:YVO4 microchip laser and Tm:Ho:GdVO4 microchip laser. At a heat sink temperature of 283 K, the maximum output power of Tm:Ho:YVO4 laser and Tm:Ho:GdVO4 laser is 47 and 34 mW under absorbed pump power of 912 mW, respectively. High efficiency can be achieved for both lasers at room temperature. Nevertheless, compared with Tm:Ho:GdVO4 laser, Tm:Ho:YVO4 laser can operate on single frequency with high power easily. At the heat sink temperature of 288 K, as much as 16.5 mW of 2052.3 nm single-longitudinal-mode (SLM) laser was achieved for Tm:Ho:YVO4 laser. Under the same condition, only 8 mW of 2048.5 nm SLM laser was achieved for Tm:Ho:GdVO4 laser.  相似文献   

2.
In this letter, we report a diodepumped CW Tm, Ho:GdVO4 laser at 77 K with a volume Bragg grating (VBG) instead of the conventional mirror. Inserting a Fabry-Perot etalon into the cavity, a singlelon-gitudinal-mode of Tm, Ho:GdVO4 laser which I s operating at 2038.387 nm with output power 64 mW is obtained. The slope efficiency of 4.68% and a narrow linewidth about 45 pm FWHM are achieved. And appropriate cavity length is about 75 ± 5 mm.  相似文献   

3.
In this paper, we report a 22.7 W continuous wave (CW) diode-pumped cryogenic Ho( at %), Tm(3 at %):GdVO4 laser. The pumping sources of Ho,Tm:GdVO4 laser are two fiber-coupled laser diodes with fiber core diameter of 0.4 mm, both of them can supply 42 W power laser operating near 802 nm. For input pump power of 64.7 W at 802.5 nm, the output power of 22.7 W in CW operation, optical-to-optical conversion efficiency of 35.1% at 2.05 μm has been attained. The M 2 factor was found to be 2.0 under an output power of 16.5 W.  相似文献   

4.
In this paper, we present experimental results concerning on the laser characteristics of Tm:YAG laser and Tm: GdVO4 laser. At room temperature, the maximum output power of Tm:YAG laser and Tm:GdVO4 laser is 210 and 145 mW, respectively. High efficiency can be achieved for both lasers at room temperature. Nevertheless, compared with Tm:GdVO4 laser, Tm:YAG laser can operate on single frequency with high power easily. As much as 60 mW of 2013.9 nm single-longitudinal-mode (SLM) laser was achieved for Tm:YAG laser. For Tm:GdVO4 laser 51 mW of 1919.7 nm SLM laser was achieved. The SLM Tm:YAG laser is better for using as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

5.
In this paper, we report a 18.8 W continuous wave and 18.4 W Q-switched diode-pumped cryogenic Tm(5 at %), Ho(0.5 at %):GdVO4 laser. The pumping source of Tm, Ho:GdVO4 laser is a fiber-coupled laser diode with fiber core diameter of 0.4 mm, supplying 42 W power at 802.5 nm. For input pump power of 41.9 W at 802.4 nm, the output power of 18.8 W in CW operation, optical-to-optical conversion efficiency of 45% at 2.05 μm and the average output power of 18.4 W in Q-switched operation, optical-to-optical conversion efficiency of 44% at 2.04 and 2.05 μm have been attained. The emission wavelengths of the Tm(5 at %), Ho(0.5 at %):GdVO4 laser were firstly compared when it worked in CW mode and Q-switched mode.  相似文献   

6.
Diode end-pumped single-frequency Tm:GdVO4 laser at room temperature was reported. The maximal output power of single-frequency is as high as 51 mW by using two uncoated fused YAG etalons, which are respectively 0.05 mm thick and 1 mm thick. We obtained the single frequency Tm:GdVO4 laser at 1919.7 nm. The slope efficiency is 1.4%. The single-longitudinal-mode (SLM) laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

7.
A diode end-pumped single-frequency Tm:GdVO4 laser at room temperature was reported. The maximal output power of single-frequency is as high as 66 mW by using two uncoated fused etalons, which are respectively 0.05 mm thick YAG and 1 mm thick quartz. We obtained the single frequency Tm:GdVO4 laser at 1875.1 nm. The slope efficiency is 1.5%. The change of the lasing wavelength on temperature was also measured. The single-longitudinal-mode (SLM) laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

8.
We report a ZGP OPO system capable of producing >6 W at a signal wavelength of 3.80 μm and an idler wavelength of 4.45 μm. The pumping source is the Tm,Ho:GdVO4 laser operated at 2.049 μm with an M 2 of 1.07. The ZGP OPO generated a total combined output power of 6.1 W at signal wavelength and idler wavelength under pumping power of 18.3 W, and an M 2 of 1.7 for OPO output was obtained.  相似文献   

9.
A diode end-pumped Tm:GdVO4 laser at room temperature is reported. The maximal output power of single-frequency is as high as 34 mW by using two uncoated fused etalons, which are respectively 0.05 mm thick YAG and 1mm thick quartz. We obtained the single frequency Tm:GdVO4 laser at 1897.6 nm with the slope efficiency of 1.3%. The single-longitudinal-mode (SLM) laser can be used as a seed laser for coherent wind measurements and differential absorption LIDAR systems.  相似文献   

10.
We report a high-power, long-wavelength infrared ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a Q-switched Tm,Ho:GdVO4 laser. The wavelength tuning range of 7.8–9.9 μm is realized by rotating the external angle of the ZGP crystal. We obtain an output power over 30 mW across the whole wavelength range and achieve a 1.71 W output power at 8.08 μm by transmitting the OPO parameters, corresponding to an idler laser slope efficiency of 12.1%.  相似文献   

11.
Room temperature Tm, Ho:YVO4 microchip laser operated around 2 μm was demonstrated for the first time to our knowledge. At a heat sink temperature of 283 K, a maximum output power of 47 mW was obtained by using a 0.25 mm length crystal at an absorbed pump power of 912 mW, corresponding to a slope efficiency of 9.1%. Increasing the temperature to 288 K, as much as 16.5 mW 2052.3 nm single-longitudinal-mode laser was achieved. The M 2 factor was measured to be 1.4.  相似文献   

12.
In this paper, we report a Tm (5.5 at %), Ho (0.55 at %):GdVO4 laser pumped by diode laser at 800 nm. To our best knowledge, it is the first time that the use of Tm (5.5 at %), Ho (0.55 at %):GdVO4 crystal among the similar experiments. We observed the influences of LD working temperature i.e. pump wavelength to 2 μm laser conversion efficiency. In the conditions of the continuous wave and 10 kHz acousto-optic Q-switch, high efficiency output of 2.05 μm laser was obtained. With the maximum pump power of 34.6, 13.9, and 13.6 W at 2.05 μm laser output was achieved respectively. Single laser pulse width was 25.6 ns in 10 kHz acousto-optic Q-switched condition.  相似文献   

13.
We report a high peak power, narrow linewidth, stable pulsed Ho:GdVO4 amplifier based on thuliumdoped fiber, which produces 6.65 W average output power at 2,048 nm and 56.8 kW peak power with 11.7 ns pulse width at 10 kHz repetition rate. We use a simple Q-switched Ho:GdVO4 laser as a seed laser and a thulium-doped fiber pumped by a 792 nm laser diode as an amplifier. The fiber amplifier provided 6.5 dB gain to the input signal. The spectral linewidth of the Ho:GdVO4 amplifier remains < 0.5 nm with an M2 beam quality of 1.36.  相似文献   

14.
The thermal focal length of a Tm,Ho:GdVO4 crystal was measured in this paper. The pump laser was 25.73 W, and the thermal focal length was 692.6 mm; based on the thermal focal length of a Tm,Ho:GdVO4 crystal, a single end-pump continuous wave (CW) operation of Tm,Ho:GdVO4 laser was designed to demonstrate the effect of thermal focal length, and a 0.26-W output power was high in considering the thermal focal length than in unconsidering the thermal focal length with a 26.1-W pump power.  相似文献   

15.
A single resonator 8.30 μm ZnGeP2 (ZGP) optical parametric oscillators (OPO) was reported in the paper. The OPO was pumped by a 10.2-W Tm,Ho:GdVO4 laser at 8 kHz in a Q-switch mode, a 170-mW idler was obtained at 8.30 μm, and the output power of the idler and signal wave was 1.0 W, corresponding to an optical-optical conversion efficiency of 10.3% and a slope efficiency of 20.9%. Tm,Ho:GdVO4 laser was pumped by a 30-W fiber-coupled laser diode (LD) at the center wavelength of 801 nm. The output wavelength of Tm,Ho:GdVO4 laser was at 2.05 μm, and the energy per pulse of 1.28 mJ in 18 ns was achieved at 8 kHz with the peak power of 71.1 kW.  相似文献   

16.
The effect of resonator length on ZnGeP2 doubly resonant optical parametric oscillator was reported in this letter. With the employment of a Tm,Ho:GdVO4 laser as the pump source at 2.05 μm, we have found that there are obvious peaks of the output power when the resonator lengths are matched to the length of the pump source. The ZGP OPO can generate a maximum output power of 4.27 W at 3.80 μm signal and 4.45 μm idler when the resonator length matches that of the pump source.  相似文献   

17.
A high-efficiency 1341 nm Nd:GdVO4 laser in-band pumped at 912 nm is demonstrated for the first time. Using an all-solid-state Nd:GdVO4 laser operating at 912 nm as pump source, 542 mW output was obtained with 1.14 W absorbed pump power. The slope efficiency with respect to the absorbed pump power was 56.6%, and the fluctuation of the output power was better than 2.6% in the given 30 min. The beam quality factor M 2 is 1.15.  相似文献   

18.
The polarized absorption spectra of Tm3+-doped potassium yttrium tungstate (Tm:KY(WO4)2) crystal at room temperature were measured. The emission spectrum and lifetime of the 3 F 4 excited state were determined. Using standard and modified Judd–Ofelt theories, the intensity parameters and the radiative lifetimes were calculated and good agreement with the experimental results was obtained for both theories. Continuous-wave laser operation in Tm:KYW crystal under laser diode pumping at 802 nm and 1750 nm was demonstrated with slope efficiency of 53% and 28% and output power of about 555 mW and 86 mW, respectively. PACS 42.55.Xi; 42.60.Pk; 42.70.Hj  相似文献   

19.
We report a single-longitudinal-mode CW diode-pumped Tm, Ho: YVO4 microchip laser emitting at both 2041.3 and 2054.6 nm. At each wavelength, the laser has a single longitudinal mode. The total single-longitudinal-mode output power reaches 185 mW with 20.4% optical conversion efficiency at 905 mW incident pump power.  相似文献   

20.
We report a CW Ho:YAlO3 (Ho:YAP) laser at room temperature pumped by a Tm:YLF laser with a Volume Bragg Grating (VBG) instead of the conventional mirror. The Ho:YAP laser operated at 2117.9 nm with output power 9.12 W. The optical-to-optical conversion efficiency is 60.4% and slope efficiency is 71.2%. The Ho:YAP output wavelength is centered at 2117.9 nm with bandwidth of about 1 nm. The beam quality factor is M 2 ∼ 1.29 measured by the traveling knife-edge method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号