首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiated samples of deproteinized powdered human bone (femur) have been examined by electron paramagnetic resonance (EPR) spectroscopy in X, Q and W bands. In the bone powder sample only one type of CO2- radical ion is stabilized in the hydroxyapatite structure in contrast to powdered human tooth enamel, a material also containing hydroxyapatite, widely used for EPR dosimetry and in which a few radicals are stable at room temperature. It is suggested that the use of deproteinized bone for EPR dosimetry could improve the accuracy of dose determination.  相似文献   

2.
Electron Paramagnetic Resonance (EPR) applications like e.g. EPR dosimetry and dating, are usually performed at X-band frequencies because of practical reasons (cost, sample size, etc.). However, it is increasingly recognized that the radiation-induced EPR signals are strongly composite, what might affect dose/age estimates. A few recent examples from both the dosimetry and dating field, illustrating the problems, will be presented. The involved spectra are mainly due to carbonate-derived radicals (CO2-, CO3(3-), etc.). Measurements at higher microwave frequencies are often recommended to improve the insight into the spectra and/or the practical signal quantification. Recent results at Q- and W-band frequencies will show that a multi-frequency approach indeed opens many interesting perspectives in this field but also that each frequency may have specific (dis)advantages depending on the EPR probe and application involved. The discussion will concern carbonate-containing apatite single crystals, shells, modern and fossil tooth enamel.  相似文献   

3.
The paramagnetic radicals induced by radiation in dental enamel are very important because they can be related to the crystalline structure of hydroxyapatite. The R-value, that is, the ratio of the amplitude of the lines of the EPR signal due to radiation, is a measure of the degree of microcrystal alignment in human tooth enamel. The aim of this study is to underline the importance of a correct evaluation of the R-value, by using the current method to increase reproducibility in EPR spectroscopy of tooth enamel. Data with and without correction show a significant difference and, consequently, they give rise to a different valuation of microcrystal alignment.  相似文献   

4.
A new and easy method for preparing blue sodalite pigments which involves high-temperature calcination of sodalite samples synthesized with aluminum sulfate and an organic template, is presented. Calcination generated the S(3)(-) and S(2)(-) radicals, and the effects of the Al/Si ratio and the calcination temperature on the nature and amounts of the radicals were examined. The radicals were characterized in detail by continuous wave and pulsed EPR at X- and W-band frequencies (approximately 9 and 95 GHz, respectively) complemented by UV-vis measurements. The high-field electron-paramagnetic resonance (EPR) measurements allowed us to clearly resolve the g anisotropy of S(3)(-) and W-band electron nuclear double resonance (ENDOR) measurements detected strong coupling with extra-framework (23)Na cations and weak coupling with framework (27)Al. On the basis of the spectroscopic results and density functional theory (DFT) calculations of the g-tensors of S(3)(-) and S(2)(-) radicals, the EPR signals were attributed to three different radicals, all with the open structure C(2v), that are located within the sodalite beta cages. While two of these radicals are well isolated, the third one is associated with an exchange-narrowed signal originating from S(3)(-) radicals in nearby sodalite cages.  相似文献   

5.
Stable isotope analysis of biogenic tissues such as tooth enamel and bone mineral has become a well-recognised and increasingly important method for determining the provenance of human remains, and it has been used successfully in bio-archaeological studies as well as forensic investigations. In particular, (18)O and (2)H stable isotope signatures of bone and hair, respectively, are well-established proxies of climate (temperature) and source water and are therefore considered as indicators of geographic life trajectories of animals and humans. While the methodology for (2)H analysis of human hair, fingernails, and bone collagen is currently used to determine human provenance, i.e. geographic origin and identify possible migration patterns, studies involving the analysis of (2)H in tooth enamel appear to be nonexistent in the scientific literature. Ground tooth enamel was analysed by continuous-flow isotope ratio mass spectrometry (IRMS) coupled on-line to a high-temperature conversion elemental analyser (TC/EA). An array of tooth enamel samples from archaeological and modern teeth has been analysed under different experimental conditions, and the results of this proof-of-concept study are presented. While no significant differences in (2)H abundance were noted as a result of H exchange studies or different sample preparation protocols, no significant differences or trends in measured δ(2)H-values were observed either with regard to known differences in geographical provenance. We concluded that the δ(2)H-values obtained from tooth enamel could not be used as proxy for a person's geographical origin during adolescence.  相似文献   

6.
A comparative study of irradiated pork meat containing bone was made by the methods of electron paramagnetic resonance (EPR) and gas chromatography (GC). In this investigation EPR has the advantage to be a very fast and unambiguous method even in the cases of thermal treatment of bones. On the other hand, GC analysis is a time consuming procedure however, it becomes very valuable for meat samples that contain no bones.  相似文献   

7.
Abstract— The bacterium Klebsiella aerogenes produces extracellular particles of cadmium sulfide in the presence of cadmium ions. The photoactivity of these particles has been studied using electron paramagnetic resonance (EPR) spectroscopy. Bacterial samples containing these semiconductor particles were irradiated with visible light in the presence of a spin trap, either phenyl-tert-butylnitrone (PBN) or 5,5-dimethyl-l-pyrroline-N-oxid(eD MPO). The results obtained reveal that a number of radicals, both oxygen and carbon based, are generated. Bacterial samples grown in the absence of cadmium ions exhibit weak, irradiation-independent EPR signals. These bacterially produced radicals are quenched when CdS particles are present. The observation of light-induced radicals provides evidence that the bacterial CdS particles are photoactive, behaving in a similar manner to inorganic CdS particles, and therefore could be used to mediate photocatalytic reactions.  相似文献   

8.
During burial, diagenetic alteration can invalidate the paleodietary signature, which the hydroxyapatite (Ca5(PO4)3OH) matrix in incremental tissues, such as tooth enamel, provides. Thus, analytical methods that can evaluate diagenetic changes are crucial in anthropological and archaeological investigations. Modern deciduous tooth enamel (exfoliated) from Solis, Mexico and Kalama, Egypt, as well as Bronze Age (circa 2200 B.C.E.) adult enamel from (present-day) Tell Abraq, U.A.E. and adult enamel from the New York African Burial Ground (NYABG) in lower Manhattan, were analyzed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The samples were compared to synthetic hydroxyapatite powder and bone ash samples. The DRIFTS spectra of tooth enamel yielded similar infra red finger print pattern to previous pellet-based FTIR spectra in both absorbance and Kubelka–Munk units. The study demonstrates that DRIFTS is a convenient alternative to pellet-based transmission FTIR in testing diagenetic changes in hard tissue for archaeological investigations. Tooth enamel samples contained a higher carbonate–phosphate ratio than synthetic hydroxyapatite and bone ash standard samples. Correlations are reported between Crystallinity Index (CIAb) and carbonate–phosphate ratio, strontium–calcium ratio, and fluoride peak appearance. Crystallinity indexes (CIAb) were in the range of 2.6–3.8 (in absorbance units) and Kubelka–Munk Crystallinity indexes (CIKM) were in the range of 3.1–4.9.  相似文献   

9.
Damian G 《Talanta》2003,60(5):923-927
Electron paramagnetic resonance (EPR) spectroscopy was used to investigate the γ-radiation damage in the microcrystalline powder form of two anti-emetic drugs, namely 4-amino-5-chloro-N-[2-(diethylamino)ethyl]-2-methoxy benzamide monohydrochloride monohydrate (metoclopramide) and 9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)methyl]-4H-carbazol-4-one monohydrochloride dihydrate (odansetron). EPR measurements proved that both of them contained various stable paramagnetic species after irradiation and relative yielding of free radicals depends on the absorbed dose. The metoclopramide drug exhibited very weak EPR signals before irradiation. Some spectroscopic properties and suggestions concerning possible structure of the radicals are discussed in this paper.  相似文献   

10.
The accumulation of CO 2 - radicals in γ-irradiated porcine, chicken, bovine, walleye pollack, and navaga bone tissues and chicken eggshells was studied by EPR spectroscopy for the purpose of detecting irradiated food and evaluating the dose absorbed during its radiation processing. It was found that, in the dose range 0–10 kGy, the concentration of radicals is a linear function of dose, and the variation coefficient of the radiationchemical yield of radicals is no higher than 30% for bone tissues from various biological species. The applicability of the additive dose method to the EPR dosimetry of irradiated beef was examined. A linear regression model used in the additive dose method was found to give overestimated results, as compared with an exponential fitting model.  相似文献   

11.
The new EPR spin trap, 1,1,3-trimethylisoindole N-oxide (TMINO), very efficiently scavenges several Fenton-derived carbon- and oxygen-centred radicals including hydroxyl, formyl and alkyl radicals. The adducts display good stability and narrow EPR line-widths, allowing the detection of the expected radicals as well as two-dimensional (time-resolved) EPR experiments. Trapping experiments were also undertaken with superoxide radicals (giving no EPR signals) and nitric oxide (which gave strong EPR signals attributed to the action of higher oxides of nitrogen). The selectivity of TMINO towards HO. with respect to superoxide radicals demonstrates its potential as a useful spin-trap.  相似文献   

12.
Abstract— N-Hydroxypyridine-2-thione, 2-S-PyrNOH, a potent antimicrobial, antifungal and anticancer agent, is photochemically active and upon UV irradiation generates free radicals. We have employed EPR and the spin-trap 5,5-dimethyl-l-pyrroline TV-oxide (DMPO) to investigate the photochemistry in aqueous solutions of 2-S-PyrNOH (used here in the form of a sodium salt, 2-S-PyrNONa). We found that upon photoactivation 2-S-PyrNONa can follow two different pathways: it can produce hydroxyl radicals and/or it can act as a photoreducing agent. The capacity of 2-S-PyrNONa to produce “OH” radicals has been demonstrated by: (1) EPR detection of the DMPO/OH adduct in UV-irradiated samples; (2) inhibition of the DMPO/OH formation by OH scavengers such as methyl alcohol, formate and DMSO and (3) by detection of EPR signals of DMPO adducts with radicals derived from reaction of OH with these inhibitors. The photoreductive capacity of 2-S-PyrNONa was deduced from the observation that the amplitude of the EPR signal of the spin adduct DMPO/OH decreased on UV irradiation in air-free pH 7.0 buffers and that the signal recovered in the dark and after aeration. The ability to generate free radicals upon UV irradiation suggests that 2-S-PyrNONa can be regarded as a potential photocytotoxic agent. This feature may be relevant to the biological action of this compound. Our findings also emphasize that caution should be used when 2-S-PyrNOH is employed as a source of OH radicals in biological or chemical systems.  相似文献   

13.
Skeletal remains are the only biological material that remains after long periods; however, environmental conditions such as temperature, humidity, and pH affect DNA preservation, turning skeletal remains into a challenging sample for DNA laboratories. Sample selection is a key factor, and femur and tooth have been traditionally recommended as the best substrate of genetic material. Recently, petrous bone (cochlear area) has been suggested as a better option due to its DNA yield. This research aims to evaluate the efficiency of petrous bone compared to other cranium samples (tooth) and postcranial long bones (femur and tibia). A total amount of 88 samples were selected from 38 different individuals. The samples were extracted by using an organic extraction protocol, DNA quantification by Quantifiler Trio kit and amplified with GlobalFiler kit. Results show that petrous bone outperforms other bone remains in quantification data, yielding 15–30 times more DNA than the others. DNA profile data presented likeness between petrous bone and tooth regarding detected alleles; however, the amount of DNA extracted in petrous bones allowed us to obtain more informative DNA profiles with superior quality. In conclusion, petrous bone or teeth sampling is recommended if DNA typing is going to be performed with environmentally degraded skeletal remains.  相似文献   

14.
Modern and fossil teeth record seasonal information on climate, diet, and migration through stable isotope compositions in enamel and dentine. Climatic signals such as seasonal variation in meteoric water isotopic composition can be recovered through a microscale histology-based sampling and isotopic analysis of enamel phosphate oxygen. The phosphate moiety in bioapatite is particularly resistant to post mortem diagenesis. In order to determine the phosphate oxygen isotope composition of enamel, phosphate must be chemically purified from other oxygen sources in the enamel lattice and matrix, mainly hydroxyl and carbonate ions, and trace quantities of organics.We present a wet chemical technique for purifying phosphate from microsampled enamel and dentine. This technique uses a sodium hypochlorite oxidation step to remove interferences from residual organic constituents of the enamel and/or dentine scaffold, isolates phosphate as relatively large and easily manipulated Ag(3)PO(4) crystals by using a strongly buffered, moderate-temperature microprecipitation, and preserves the oxygen isotope composition of the initial tooth phosphate. The reproducibility of phosphate oxygen isotope compositions thus determined (measured as delta(18)O, V-SMOW scale) is typically 0.2-0.3 per thousand (1 s.d.) on samples as small as 300 microg of enamel or dentine, a considerable improvement over available techniques for analyses of bioapatite phosphate oxygen.  相似文献   

15.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine the Pb/Ca ratios in the enamel of deciduous incisors, a biomarker of in utero Pb exposure, using pelletized bone certified reference materials (CRMs) as calibrants. The detection limit for Pb by LA-ICP-MS was 11 microg kg(-1) demonstrating an adequate sensitivity for Pb in the teeth of unexposed individuals (0.1-10 mg kg(-1)). The precision for the Pb/Ca ratios in NIST SRM 1486 Bone Meal was 3.4%. The correlation between Pb/Ca ratios obtained by LA-ICP-MS and those obtained by a digestion method was highly significant. We found one point calibration by a CRM was applicable for the quantification of Pb in tooth enamel. This method will be valuable for the assessment of in utero Pb exposure levels.  相似文献   

16.
Recent Electron Paramagnetic Resonance (EPR) studies on alanine powders as a function of irradiation dose and temperature on the one hand and single crystal Electron Nuclear DOuble Resonance (ENDOR) studies on the other hand, showed the presence of at least three radicals contributing to the total alanine EPR spectrum. The latter spectrum obtained after irradiation at room temperature (RT), is dominated by the well-known stable-alanine-radical (SAR) CH3C*HCOO-, also denoted R1. Appropriate heating of irradiated alanine causes the relative contribution of R1 to decrease, resulting in a spectrum mainly caused by the H-abstraction radical CH3C*(NH3)COO-, denoted R2. Although the EPR spectrum of these two radicals could be satisfactorily simulated, their influence on dose reconstruction has not been reported yet. Therefore, a detailed Maximum Likelihood Common Factor Analysis (MLCFA) study has been performed on EPR spectra from polycrystalline alanine samples, after irradiation and heat treatments. Conclusions concerning the number of contributing radicals and their influence on the RT irradiated alanine EPR spectrum will be made.  相似文献   

17.
The presented study is a continuation of our work performed during participation in the Third International Intercomparison on EPR Tooth Dosimetry. During the process of samples preparation, all 22 enamel samples were accidentally exposed for about 30 min to 150 degrees C temperature. This considerably affected shape of their EPR spectra mainly due to substantial increase in the background signal, which approximately doubled its contribution to the spectra. These effects were studied closer under controlled conditions of the delivered dose and heating temperature using another enamel samples. The observed changes in the spectra shape partially faded within a few days after heating. The heating resulted also in a noticeable generation of a spectral component similar to the dosimetric signal induced in enamel by radiation. The temperature-induced dosimetric component in EPR spectra of the heated samples remained constant for 32 days. Deviations in calculated contributions of the dosimetric signal into total EPR spectra of irradiated sample varied from -12 to +15% of its initial contribution in the non-heated enamel, depending on type of the background spectrum applied in numerical processing of the spectra.  相似文献   

18.
The oxygen isotope ratio of CO(2) liberated from structural carbonate in tooth enamel apatite was measured at phosphoric acid reaction temperatures of 25 degrees C, 60 degrees C and 90 degrees C, and it was found that apparent acid fractionation factors for pristine enamel, fossilized enamel, and calcite follow different temperature relationships. Using sealed vessel reactions normalized to alpha(25) = 1.01025 (the fractionation factor for calcite at 25 degrees C), the apparent fractionation factor at 90 degrees C (alpha*(90)) for pristine enamel ranged between 1.00771 and 1.00820, and between 1.00695 and 1.00772 for fossilized enamel. Apparent fractionation factors for common acid bath reactions are similar to those for sealed vessel reactions. A significant correlation exists between alpha*(90) and F(-) content, suggesting that change in the acid fractionation factor may be related to the replacement of OH(-) with F(-) during fossilization of bioapatite. These results have important implications for making accurate comparisons between modern and fossil tooth enamel delta(18)O values, and for the uniformity of isotope data produced in different laboratories using different acid reaction temperatures.  相似文献   

19.
Samples of the anatase phase of titania were treated under vacuum to create Ti(3+) surface-defect sites and surface O(-) and O(2) (-) species (indicated by electron paramagnetic resonance (EPR) spectra), accompanied by the disappearance of bridging surface OH groups and the formation of terminal Ti(3+)-OH groups (indicated by IR spectra). EPR spectra showed that the probe molecule [Re(3)(CO)(12)H(3)] reacted preferentially with the Ti(3+) sites, forming Ti(4+) sites with OH groups as the [Re(3)(CO)(12)H(3)] was adsorbed. Extended X-ray absorption fine structure (EXAFS) spectra showed that these clusters were deprotonated upon adsorption, with the triangular metal frame remaining intact; EPR spectra demonstrated the simultaneous removal of surface O(-) and O(2) (-) species. The data determined by the three complementary techniques form the basis of a schematic representation of the surface chemistry. According to this picture, during evacuation at 773 K, defect sites are formed on hydroxylated titania as a bridging OH group is removed, forming two neighboring Ti(3+) sites, or, when a Ti(4+)-O bond is cleaved, forming a Ti(3+) site and an O(-) species, with the Ti(4+)-OH group being converted into a Ti(3+)-OH group. When the probe molecule [Re(3)(CO)(12)H(3)] is adsorbed on a titania surface with Ti(3+) defect sites, it reacts preferentially with these sites, becoming deprotonated, removing most of the oxygen radicals, and healing the defect sites.  相似文献   

20.
Exposure of gamma-irradiated L-alanine samples to sunlight and to light from a regular, fluorescent lamp resulted in significant changes in their EPR resonance patterns, both to spectral shapes and intensities. The experimental EPR spectra were numerically decomposed into three components reflecting contributions of three different radicals (R1-R3) generated by ionizing radiation in alanine. The light exposure caused a decay of the measured EPR signal intensity. For similar light intensities and exposure times the decay was much more pronounced in samples illuminated by sunlight than in samples illuminated by the fluorescent lamp. In both cases light-induced decay of R1 radicals was observed. Sunlight illumination resulted in a moderate decay of R2 radicals and in a doubling of the R3 radical population. On the other hand, fluorescent light caused a significant increase of R2 radicals and did not change the amount of R3 radicals. A quantitative analysis of the variations of the three radical contributions to the total EPR spectra upon fluorescent light exposure suggests a net R1-->R2 free radical transformation. These effects of light on the alanine dosimetric signal should be taken into account in dosimetry protocols, assuring protection of alanine dosimeters from extended exposure to light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号