首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, a rapid and sensitive ultra performance liquid chromatography‐mass spectrometry method has been proposed for the analysis of capsaicinoids (nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin) present in different Capsicum samples. Extraction of capsaicinoids was carried out by liquid–liquid extraction using ethanol as an extracting solvent, while the chromatographic separation was achieved by reversed phase C18 column with gradient mobile phase (solvent A: acetonitrile and solvent B: water with 0.1% formic acid). Under the optimum experimental conditions, the linear ranges were 0.5–50 μg/g with correlation coefficient (r2) >0.999 for each capsaicinoids and detection limits were 0.15, 0.05, 0.06, 0.2, and 0.1 μg/g for nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin, and homodihydrocapsaicin, respectively. Run‐to‐run and day‐to‐day precisions of the method with relative standard deviations <1.5% were achieved for all analyzed capsaicinoids. The robustness of the method was determined by utilizing different injection volumes of the extracts. Furthermore, to validate the system robustness, a run of high number of capsaicinoids present in different varieties of Capsicum samples was performed in this study. All the capsaicinoids were separated in a time of less than 9 min by employing the proposed method.  相似文献   

2.
Capsaicin and dihydrocapsaicin are two main bioactive components of Capsicum frutescens and are widely used as food additives and drugs in China and India. Due to their similarity in structures, isolation of capsaicin and dihydrocapsaicin with traditional methods such as silica gel column chromatography, normal‐phase thin‐layer chromatography (TLC) becomes difficult. This study involves separating capsaicin and dihydrocapsaicin with sufficient purity and recovery using high‐speed counter‐current chromatography (HSCCC) with a solvent system composed of n‐hexane–ethyl acetate–methanol–water–acetic acid (20:20:20:20:2, v/v/v/v/v). Separation parameters such as sample volume, and sample concentration were first optimized on analytical HSCCC, and then scaled up to preparative HSCCC. 0.65 g capsaicin and 0.28 g dihydrocapsaicin were obtained from 1.2 g crude extract and their purities were 98.5 and 97.8%, respectively. The recoveries of the two compounds were 86.3 and 85.4%, respectively. The purity of the isolated compounds was analyzed by high‐performance liquid chromatography (HPLC) and their structures were identified by 1H nuclear magnetic resonance (NMR) and 13C NMR analysis.  相似文献   

3.
A new method based on pressurized liquid extraction followed by LC‐MS/MS analysis has been developed for the identification and quantification of three capsaicinoids (capsaicin, dihydrocapsaicin, and nordihydrocapsaicin) in extracts of Capsicum annuum. For the recovery of three capsaicinoids, the efficiency levels of ultrasonic‐assisted extraction, microwave‐assisted extraction, Soxhlet extraction, and pressurized liquid extraction were compared under different conditions. Pressurized liquid extraction resulted in higher yields. Pressurized liquid extractions were performed using methanol; temperature was set at 100°C and pressure at 1500 psi. LC analysis was performed on a Waters XBridge? C18 column (150 × 2.1 mm, id 3.5 μm) eluted by a mobile phase of 0.1% formic acid and ACN. Data acquisition was carried out in multiple reaction monitoring transitions mode, monitoring two‐reaction monitoring transitions to ensure an accurate identification of target compounds in the samples. The proposed method is rapid, simple, and could be utilized for the routine analysis of three capsaicinoids in C. annuum samples.  相似文献   

4.
The solid, hollow, and tube‐in‐tube porous nanofiber structures of TiO2 are synthesized successfully by a simple non‐coaxial electrospinning method without using a complicated coaxial jet head, combined with adjusting the concentration of the TiO2 precursor and the pinhole diameter of the jet head and by final calcination. The formation mechanisms of different structured TiO2 fibers are discussed in detail. This method is facile and effective, and easy to scale up. Furthermore, it is a versatile method for constructing tube‐in‐tube fibers of other metal oxides such as ZrO2, SiO2, SnO2, and In2O3. The photocatalytic activity of tubular TiO2 nanofibers for the degradation of 2‐chlorophenol and 2,4‐dichlorophenol under UV or visible‐light irradiation is better than the one of commercial available TiO2 powder, rutile, and anatase TiO2 fibers.  相似文献   

5.
Dye‐sensitized solar cells (DSSCs) are generally viewed as next generation photovoltaic devices. Electrospun TiO2 nanofibers (NFs) film can be used to construct photoanode for DSSCs. A systematic strategy to optimize such a novel photoanode material of DSSCs was elaborated in this paper. A main drawback of NFs photoanode is the poor adhesion of ceramic NFs film to its conductive glass substrate. This problem can be well solved by sandwiching a transition layer between the overlaid NFs film and the underlaid glass substrate through an interfacial spin‐coating pre‐treatment. After electrospinning, a controllable calcination is also indispensable for obtaining an ideal nanofibrous mat with good morphology and adhesion. The choice of calcination parameters including temperature, holding time, and heating rate was discussed in detail. In addition, a surface TiCl4 post‐treatment can further improve adhesion as well as strength for the NFs photoanode film. And the performance of the resulting DSSCs will benefit from the TiCl4 post‐treatment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The utilization of the capsaicin modified carbon nanotube modified basal‐plane pyrolytic graphite electrode or p‐chloranil modified carbon paste electrodes are presented for the determination of pharmaceutical compounds containing amine functionality, such as benzocaine and lidocaine. In detection of benzocaine at a capsaicin modified electrode, the guaiacol functional group is irreversibly electrochemically oxidized to form the o‐quinone derivative which then undergoes nucleophilic attack by the aromatic amine group in benzocaine via a 1,4‐Michael addition mechanism forming a catechol‐amine adduct. The electrochemically initiated formation of the capsaicin‐benzocaine adduct causes a linear decrease in the voltammetric signal corresponding to capsaicin which correlates to the added concentration of benzocaine.  相似文献   

7.
The aim of present study is to develop an efficient and low‐cost method for capsaicin production isolated from capsaicinoids by macroporous resin adsorption chromatography. HZ816 resin has shown the best adsorption and desorption capacities for capsaicin among other resins. To optimize the operating parameters for separation, initial concentration, diameter‐to‐height ratio, mobile phase ratio, and crystallization method were investigated. When capsaicinoids solution (5 g/L) was loaded onto the column (diameter‐to‐height ratio = 1:12) with ethanol/1% w/w NaOH (4:6, v/v) as the mobile phase, capsaicin was purified most effectively. By using acid neutralization as the crystallization method, the purity of capsaicin improved from 90.3 to 99.5% with 82.3% yield. In conclusion, this study provides a simple and low‐cost method for the industrial‐scale production of high‐purity capsaicin.  相似文献   

8.
A Plackett‐Burman type dataset from a paper by Williams [1], with 28 observations and 24 two‐level factors, has become a standard dataset for illustrating construction (by halving) of supersaturated designs (SSDs) and for a corresponding data analysis. The aim here is to point out that for several reasons this is an unfortunate situation. The original paper by Williams contains several errors and misprints. Some are in the design matrix, which will here be reconstructed, but worse is an outlier in the response values, which can be observed when data are plotted against the dominating factor. In addition, the data should better be analysed on log‐scale than on original scale. The implications of the outlier for SSD analysis are drastic, and it will be concluded that the data should be used for this purpose only if the outlier is properly treated (omitted or modified). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, dummy molecularly imprinted polymers with high selectivity and affinity to capsaicin and dihydrocapsaicin are designed using N‐vanillylnonanamide as a dummy template. The performance of dummy molecularly imprinted polymers and nonimprinted polymers was evaluated using adsorption isotherms, adsorption kinetics, and selective recognition capacity. Dummy molecularly imprinted polymers were found to exhibit good site accessibility, taking just 20 min to achieve adsorption equilibrium; they were also highly selective toward capsaicin and dihydrocapsaicin. We successfully used dummy molecularly imprinted polymers as a specific sorbent for selectively enriching capsaicin and dihydrocapsaicin from chili pepper samples. In a scaled‐up experiment, the selective recovery of capsaicinoids was calculated to be 77.8% using solid‐phase extraction. To the best of our knowledge, this is the first example of the use of N‐vanillylnonanamide as a dummy template in molecularly imprinted polymers to simultaneously enrich capsaicin and dihydrocapsaicin.  相似文献   

10.
In this study, the molecularly imprinted polymers (MIPs) of capsaicin are prepared by bulk polymerization (MIPs1), precipitation polymerization (MIPs2), and surface imprinting technology based on SiO2/Fe3O4 particles (MIPs3), respectively. MIPs are characterized by scanning electron microscopy and fourier transform infrared spectroscopy. The adsorption kinetics and thermodynamics of these composites are also investigated to estimate their capacity to rebind capsaicin. The adsorption kinetics show that the adsorption process of MIPs1 is fitted to pseudo first‐order kinetic model, while the kinetic properties of MIPs2 and MIPs3 are well described by pseudo second‐order kinetic model. Adsorption thermodynamics analysis indicated that there are two kinds of binding sites with different affinity in each MIPs, whereas only one kind of binding site in non‐imprinted polymers. All adsorption isotherms of MIPs are fitted to Freundlich models, illustrated that binding sites are distributed heterogeneously in the surface of the materials, and the adsorption might occur in the multimolecular layers. Comparisons of experimental data of three MIPs are achieved and the results show that MIPs3 has the best affinity and absorption capacity to capsaicin. Moreover, the MIPs3 maintain the magnetic properties of Fe3O4 particles, which will be applied to the rapid separation of capsaicin from chili peppers samples. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 157–164  相似文献   

11.
Anthropogenic emissions of carbon dioxide (CO2) into the atmosphere have had a significant impact on the Earth's carbon cycle. As part of the global effort to reduce climate change, the geological storage of CO2 has been accepted as a method that may provide up to 25 % of the total reduction of emissions, although this figure is still subject to change. In Germany and worldwide, geological storage capacities are expected to be sufficient for several decades. Carbon dioxide can be captured from sources such as large‐scale industrial (energy, steel, cement or chemical) facilities and transported to long‐term storage sites in deep saltwater‐bearing aquifers. Above the porous sandstone reservoirs in which the CO2 is to be stored, an impermeable cap rock is required to provide a barrier for the upward‐migrating gas. In time, a significant quantity of the CO2 can be retained within the reservoir pore space by capillary forces, dissolved in water to form carbonic acid, or deposited as carbonate minerals. The storage site must be free of potential leakage pathways. To this end, extensive monitoring programs need to be carried out. The Ketzin pilot site, an example of such a program, has shown CO2 storage on a research scale to be safe and reliable.  相似文献   

12.
This article describes a possible combination of two promising fields of analytical chemistry—the preparation of sol‐gel matrices with varying additives and their application in capillary electrochromatography. The inner surfaces of capillaries were coated with the sol‐gel solution containing either pure synthetic chemical additive—alliin or capsaicin—or an extract of their natural sources—garlic and chilli pepper, respectively. The modified capillaries were tested for interaction with two neurotransmitters, oligopeptides and nucleotides under conditions of open‐tubular capillary electrochromatography. Because both of the natural extracts also contain vitamin C and saccharose, the capillaries with sol‐gel modifiers containing each of these substances were also tested. The obtained results from the perspective of changes in the electrochromatograms and the effective mobilities of analytes are discussed with respect to mild conditions both in the preparation process of the sol‐gel matrix and during the separations.  相似文献   

13.
Capsicum annuum L. (family: Solanaceae) possesses therapeutic benefits for the treatment of rheumatism, neuropathy, psoriasis, flatulence and so on. In this study fruits of four different varieties of C. annuum from four different geographical regions in India were evaluated based on their total content of capsaicin. Ethanol extracts of the fruits were used. HPTLC plates were developed in a mobile phase containing benzene, ethyl acetate and methanol (75:20:5). Densitometric scanning was performed at a wavelength of 283 nm in the absorbance mode. The calibration curve was described by the equation Y=393.587+3.836*X with a correlation coefficient (r) of 0.99890. The content of capsaicin in Nagaland, Manipur, West Bengal and Shimla varieties was found to be 3.71%, 1.78%, 0.54% and 0.06%, respectively. The developed densitometric method was found to be specific, accurate and precise. A recovery study and precision showed low levels of %RSD values. The linearity range of the curve for capsaicin was found to be 300-900 ng per spot. The limit of detection and the limit of quantification values were determined to be 31 and 94 ng, respectively, proving the sensitivity of the method. Thus the method can be used to control the total content of capsaicin on an industrial scale.  相似文献   

14.
The knowledge on alkaline‐earth metal nitrides of main‐group elements with Perovskite structures of the general composition (A3Nx)E is reviewed. Compounds with closely related crystal structures denoted as Ruddlesden‐Popper‐Series are also taken into account. In a second part, radii considerations are discussed for use in prediction of the occurrence of distorted Perovskites and hexagonal Perovskite stacking variants.  相似文献   

15.
The presented research focuses on the electrochemical determination of capsaicin, a lipophilic alkaloid which originates hotness in chili peppers. An electrochemical sensor based on epoxy‐graphite composite with the modification of titanium dioxide (TiO2) nanoparticles is developed for the determination of this alkaloid. The measurements were carried out in glycine buffer at pH 2.5 using cyclic voltammetry. Two linear concentration ranges were obtained from 6 to 75 μM (R=0.99) and from 12 to 138 μM, with a detection limit of 5.34 μM and 11.3 μM capsaicin, for 1st and 2nd oxidation peak, respectively. The main advantage of developed sensor is its repeatability and robustness against fouling; the relative standard deviation (RSD) value was 2.53 % (n=10). This voltammetric sensing procedure has successfully been applied to quantify capsaicin in various real samples such as hot chili sauce and pharmaceutical preparations.  相似文献   

16.
One of the two bridging protons of the aza‐nido‐decaboranes RNB9H10X can be removed by certain bases to give nido‐anions [RNB9H9X] [R/X = H/H ( 1 a ), Ph/H ( 1 b ), p‐MeC6H4/H ( 1 c ), Bzl/H ( 1 d ), H/N3 ( 1 ′ a )]; the stericly demanding base 1,8‐bis(dimethylamino)naphthalene (“proton sponge”, ps) is ideal. In the case of tBu anion, the deprotonation (→ C4H10) may be accompanied by a hydridation (→ C4H8), yielding the arachno‐anions [RNB9H11X] ( 2 a , b , d , 2 ′ a ); these are the main products, when stericly non‐demanding bases like H are applied. The Lewis acid BH3 is added to 1 a and 1 ′ a to give the aza‐arachno‐undecaborates HNB10H12X [X = H ( 3 a ), N3 (in position 2) ( 3 ′ a )]. Thia‐ and selenaaza‐arachno‐undecaborates, [S(RN)B9H10] ( 4 b , c ) and [Se(RN)B9H10] ( 4 ′ b , c ), are obtained from 1 b , c by the addition of sulfur or selenium, respectively. The methylation of the anions 4 c and 4 ′ c gives the thia‐ and selenaazaarachno‐undecaboranes (MeS)(RN)B9H10 ( 5 c ) and (MeSe)(RN)B9H10 ( 5 ′ c ), respectively. The action of HBF4 on the arachno‐borates [HNB10H12X] ( 3 a , 3 ′ a ) leads to a mixture of nido‐HNB9H10X and nido‐HNB10H11X by the elimination of BH3 or H2, respectively; the aza‐nido‐decaborane predominates in the case of 3 ′ a and the aza‐nido‐undecaborane in the case of 3 a . The action of HBF4 on the anion 4 c yields the hypho‐undecaborate [S(RN)B9H10F2] ( 6 c ). The structures of the products are elucidated on the basis of 1H and 11B NMR spectra, supported by 2D COSY and HMQC techniques. Two types of 11‐vertex‐arachno structures and an 11‐vertex‐hypho structure are found for the products. The crystal structures of 5 c and [Hps] 6 c · CH2Cl2 are reported.  相似文献   

17.
In this work, we present a theoretical study (based on DFT‐calculations) of the electronic properties of compounds crystallising in a NH4Pb2Br5 type structure in a wide pressure range. The main focus of this study is to elucidate the nature of bonding of the ns2‐cations at ambient and elevated pressure. For a better understanding of the structure and bonding, the DOS of these compounds are evaluated and discussed on the basis of a simple model assuming mainly ionic interactions. The calculations are complemented by an orbital analysis using the crystal orbital Hamilton population (COHP) and an analysis of the electronic density topology with the electron localisation function (ELF). Structural and theoretical investigations give results that are in excellent agreement: The DFT‐calculations confirm the existence of bonding interactions between the ns2‐cations at elevated pressure. Our study indicates that the “character” of the additional electron pair changes with increasing pressure from nonbonding to bonding in agreement with a simple model system of two interacting ns2‐cations.  相似文献   

18.
19.
A three‐dimensional polymeric NiII complex, [Ni(bpp)(NIP)(H2O)]n (bpp = 1,3‐di(4‐pyridyl)propane and NIP = 5‐nitroisophthalate), has been synthesized and characterized. The coordination number of the nickel atom is six (NiN2O4) and the coordination environment around the NiII atom may be described as a distorted octahedron in which two nitrogen atoms of “bpp” ligand occupy the cis positions. The effective magnetic moment for this complex indicate that the interactions between two NiII atoms through the effective exchange media are antiferromagnetic. Self‐assembly of these compounds in the solid state via π–π‐stacking interactions is discussed.  相似文献   

20.
Synthesis and characterization of seven new complexes [Cu(2‐MeSnic)2(CH3OH)]2 (where 2‐MeSnic is 2‐methylthionicotinate), [Cu(2‐MeSnic)2L2]2 (where L is pyridine — py, ethylnicotinate — Etnic and butylnicotinate — Bunic), [Cu(2‐MeSnic)2L2(H2O)2] (where L is py and nicotinamide — nia) and [Cu(2‐MeSnic)2(N‐Menia)2(H2O)2]·2H2O (where N‐Menia is N‐methylnicotinamide) are reported. The characterization were based on elemental analysis, infrared, electronic and EPR spectra, and magnetic susceptibility measurements over a temperature range of 1.8 — 300 K or 70 — 300 K. Three complexes of different type were studied by X‐ray analysis. The molecule of [Cu(2‐MeSnic)2(CH3OH)]2 has dimeric paddle‐wheel cage structure with a tetragonal pyramidal arrangement around CuII. The dimer results from the fact that carboxyl groups of four 2‐MeSnic anions function as bridging in a syn‐syn arrangement. On the other hand [Cu(2‐MeSnic)2(py)2]2 forms dimers with hexacoordinated CuII atoms in highly distorted coordination octahedra, each with two oxygen atoms of bridging carboxyl groups in an anti‐anti arrangement of two 2‐MeSnic anions, with two oxygen atoms of one asymmetrically chelating 2‐MeSnic anion and with two nitrogen atoms of two pyridine ligands. The temperature independent EPR spectrum for this complex exhibits an axial signal which corresponds to almost isolated S = 1/2 magnetic ions. Magnetic data for the dimer show a weak antiferromagnetic interaction between the two metal ions with J = —0.65 cm—1. The CuII atom in complex [Cu(2‐MeSnic)2(py)2(H2O)2] is hexacoordinated in an elongated centrosymmetrical tetragonal‐bipyramidal arrangement (4 + 2). Based on the molecular structure the electronic, infrared, electron paramagnetic resonance spectra and magnetic properties are discussed and stereochemistry as well as the mode of ligand coordination in new solid complexes under study have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号