首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Ginkgolide B is in great demand worldwide on account of its extensive and excellent pharmacological effects, however, it is difficult to separate and purify ginkgolide B. In this study, ginkgolide B molecularly imprinted polymers were prepared by combining software simulation and molecular imprinting technique, and its characterization and adsorption performed evaluation were performed to understand the adsorption behavior of the polymers. The adsorption equilibrium concentration of molecularly imprinted polymers was 0.70 mg/mL, and the adsorption equilibrium time was 4 h. Meanwhile, the adsorption isotherm of the polymers for ginkgolide B fitted well with the Langmuir model, and the adsorption kinetics was in line with the pseudo‐second‐order kinetics. In contrast, the adsorption capacity of molecularly imprinted polymers on ginkgolide B was higher than that of non‐molecular imprinted polymers, with better selectivity and better adsorption after repeated use for six times. The application experiments showed that molecular imprinted polymers have a good adsorption effect in low purity samples. Therefore, the polymers reported herein can be expected to apply in the adsorption and separation of ginkgolide B samples.  相似文献   

2.
3.
Ginkgolide B is a dietary diterpene with multiple pharmacological activities. However, current research on ginkgolide B is not comprehensive. The current study analyzed the metabolic profile of ginkgolide B in vivo and in vitro using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. To detect and identify the different metabolites in ginkgolide B, a novel data processing method was used as an assistant tool. A total of 53 different metabolites of ginkgolide B (38 phase I metabolites and 15 phase II metabolites) were detected relative to blank samples. The biotransformation route of ginkgolide B was identified as oxidation, dehydroxylation, hydrogenation, decarbonylation, demethylation, sulfate conjugation, glucose conjugation, methylation, and acetylation. The current study demonstrated a method for rapidly detecting and identifying metabolites and provided useful information to further characterize the pharmacology and mechanism of ginkgolide B. A method for the analysis of other diterpene metabolic components in vivo and in vitro was also established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号