首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of epitaxial layers of the InGaAs alloy were deposited on (001) oriented InP substrates by using hydride VPE technique. The layers were characterized by Double Crystal Diffractometry (DCD), Photoluminescence (PL), Hall effect and Capacitance-Voltage (C-V) measurements. The growth parameters and the quality of the grown layers are discussed on the basis of electrical and structural data analysis.  相似文献   

2.
A 300 μm GaN thick-film, in diameter 1.5 in, was demonstrated without any crack by hydride vapor phase epitaxy (HVPE) growth. The technique used in relaxing the residual stress caused by differences of thermal expansion coefficients (TEC) and lattice constants between GaN and sapphire substrate to prevent GaN film from crack is called a dot air-bridged structure. After the laser lift-off process, 300-μm-thick freestanding GaN wafer, in diameter 1.5 in, could be fabricated. The compressive stress in the dot air-bridged structure was measured by micro-Raman spectroscopy with the E2(high) phonon mode. The compressive stress could be reduced to as small as 0.04 GPa, which could prevent the crack during the epitaxial process for GaN growth by HVPE. It is important to obtain a large-area crack-free GaN thick-film, which can be used for fabricating freestanding GaN wafer.  相似文献   

3.
Free-standing GaN wafers grown by hydride vapor phase epitaxy are typically concavely bowed. In situ and ex situ curvature measurements indicate that some strain developing at the very beginning of the epitaxial process or even in the template grown by metalorganic vapor phase epitaxy may be the origin of this bow. It can be only partly released by etching the defective back-side of the samples indicating that the strong dislocation density gradient is not the only reason for strain in free-standing GaN.  相似文献   

4.
5.
CuPt-ordering and phase separation were directly investigated in In1-xGaxAsyP1-y with a low arsenic content grown by organometallic vapor phase epitaxy on GaAs substrates. CuPt-ordering and phase separation in samples grown at the substrate temperatures of 630 and 690 °C were characterized by transmission electron diffraction and transmission electron microscopy. Although the immiscibility of InGaAsP was enhanced at the lower substrate temperature, the sample grown at 630 °C showed less phase separation than the 690 °C-grown sample. The degree of CuPt-ordering was significantly enhanced in the sample grown at 630 °C. The results demonstrated that the CuPt-ordering originating from surface reconstruction of P(2×4) suppressed the phase separation even in the miscibility gap. The detailed characterization of the phase separation clearly revealed a vertical composition modulation (VCM) in InGaAsP for the first time. The mechanism of the VCM formation is discussed based on the modulated-strain field on the surface.  相似文献   

6.
About 1.2 mm thick GaN bulk crystals were obtained by combining a pulsed NH3-flow modulation (PFM) method and a self-separation method of short-shutting NH3 flow when using hydride vapor phase epitaxy (HVPE). High crystal quality of bulk GaN was evaluated by X-ray rocking curves (XRC) and the full width at half maximum (FWHM) values were 110, 72 and 83 arcsec for (002), (102) and (100) reflection planes, respectively. The PFM method is proved to be effective in reducing cracks and keeping the surface smooth. And the method of short-shutting NH3 flow can lead to GaN thick layer separate from sapphire substrate when cooling from the high growth temperature. Growth and separation mechanisms were investigated. Two states were found in PFM method. With PFM method modulating between high quality state and low stress state, 300 μm thick GaN layers without cracks were obtained. Study of spontaneous separation mechanism revealed that the separation attributed to formation of voids inside the GaN layer.  相似文献   

7.
A new hydride vapor phase epitaxy (HVPE)-based approach for the fabrication of freestanding GaN (FS-GaN) substrates was investigated. For the direct formation of low-temperature GaN (LT-GaN) layers, the growth parameters were optimized: the polarity of ZnO, the growth temperature, and the V/III ratio. The FS-GaN layer was achieved by gas etching in an HVPE reactor. A fingerprint of Zn out-diffusion was detected in the photoluminescence measurements, especially for the thin (80 μm) FS-GaN film; however, a thicker film (400 μm) was effectively reduced by optimization of GaN growth.  相似文献   

8.
We investigated the properties of Ge-doped, high-quality bulk GaN crystals with Ge concentrations up to 2.4×1019 cm−3. The Ge-doped crystals were fabricated by hydride vapor phase epitaxy with GeCl4 as the dopant source. Cathodoluminescence imaging revealed no increase in the dislocation density at even the highest Ge concentration, with values as low as 3.4×106 cm−2. The carrier concentration, as determined by Hall measurement, was almost identical to the combined concentration of Ge and unintentionally incorporated Si. The electron mobilities were 260 and 146 cm2 V−1 s−1 for n=3.3×1018 and 3.35×1019 cm−3, respectively; these values are markedly larger than those reported in the past for Ge-doped GaN thin films. The optical absorption coefficient was quite small below the band gap energy; it slightly increased with increase in Ge concentration. Thermal conductivity, estimated by the laser-flash method, was virtually independent of Ge concentration, maintaining an excellent value around 2.0 W cm−1 K−1. Thermal expansion coefficients along the a- and m-axes were approximately constant at 5.0×10−6 K−1 in the measured doping concentration range.  相似文献   

9.
The effect of substrate orientation on the surface orientation of thick GaN layers grown by hydride vapor phase epitaxy (HVPE) has been established. Layers oriented along the (0001), (11$ bar 2 $ bar 2 0), and (10$ bar 1 $ bar 1 3) planes have been obtained on, respectively, c- and a-, r-, and m-oriented substrates. Depending on the orientation of the GaN layer surface, surface defects (terraces and growth pits) are faceted by different planes whose intersections with the growth surface are perpendicular to the direction of growth pit faces. It is found that the sapphire substrate surface orientation has an effect on the layer structural quality (which increases with an increase in the layer thickness, regardless of the layer orientation). The directions of crack propagation in the GaN layer also depend on the surface orientation of the layer and are mainly determined by the intersections of the {1$ bar 1 $ bar 1 00} planes of the layer with the surface.  相似文献   

10.
Superlattices of cubic gallium nitride (GaN) and gallium arsenide (GaAs) were grown on GaAs(1 0 0) substrates using metalorganic vapor phase epitaxy (MOVPE) with dimethylhydrazine (DMHy) as nitrogen source. Structures grown at low temperatures with varying layer thicknesses were characterized using high resolution X-ray diffraction and atomic force microscopy. Several growth modes of GaAs on GaN were observed: step-edge, layer-by-layer 2D, and 3D island growth. A two-temperature growth process was found to yield good crystal quality and atomically flat surfaces. The results suggest that MOVPE-grown thin GaN layers may be applicable to novel GaAs heterostructure devices.  相似文献   

11.
Gallium-doped zinc oxide thin films were deposited by the spray pyrolysis technique onto Corning 7059 glass substrates at a temperature of 350°C using a precursor solution of zinc acetate in isopropyl alcohol. The films were prepared using different gallium concentrations keeping the other deposition parameters such as air and solution flow rates and solution concentration constant. The variations of the structural, electrical and optical properties with the doping concentration were investigated. X-ray diffraction data showed that the films were polycrystalline with the (0 0 2) preferred orientation. The texture coefficient and grain size were evaluated for different doping concentrations. The films with 5.0 at% gallium had a resistivity of 1.5×10−3 Ω cm and a transmittance of 85% with an energy band gap of 3.35 eV.  相似文献   

12.
Using hydride vapor phase epitaxy the influence of growth parameters on the crack density is studied for thick epitaxially lateral overgrown (ELOG) GaN layers. Reactor pressure, growth rate, and substrate temperature are key factors to obtain crack-free thick GaN layers. The cracking mechanism is discussed and void formation on top of the SiO2 stripes is proposed to play a key role in stress relaxation and crack suppression.  相似文献   

13.
The electrical and optical properties of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy were systematically investigated. The photoluminescence spectra of Mg-doped a- and c-plane GaN films exhibit strong emissions related to deep donors when Mg doping concentrations are above 1×1020 cm−3 and 5×1019 cm−3, respectively. The electrical properties also indicate the existence of compensating donors because the hole concentration decreases at such high Mg doping concentrations. In addition, we estimated the ND/NA compensation ratio of a- and c-plane GaN by variable-temperature Hall effect measurement. The obtained results indicate that the compensation effect of the Mg-doped a-plane GaN films is lower than that of the Mg-doped c-plane GaN films.  相似文献   

14.
The present study focused on the effect of an intermediate-temperature (IT; ∼900 °C) buffer layer on GaN films, grown on an AlN/sapphire template by hydride vapor phase epitaxy (HVPE). In this paper, the surface morphology, structural quality, residual strain, and luminescence properties are discussed in terms of the effect of the buffer layer. The GaN film with an IT-buffer revealed a relatively lower screw-dislocation density (3.29×107 cm−2) and a higher edge-dislocation density (8.157×109 cm−2) than the GaN film without an IT-buffer. Moreover, the IT-buffer reduced the residual strain and improved the luminescence. We found that the IT-buffer played an important role in the reduction of residual strain and screw-dislocation density in the overgrown layer through the generation of edge-type dislocations and the spontaneous treatment of the threading dislocation by interrupting the growth and increasing the temperature.  相似文献   

15.
Growth of pure‐, sodium‐ and lithium‐ doped potassium hydrogen tartrate single crystals by gel technique is reported. Growth conditions conducive for the growth of single crystals are worked out. The crystals are characterized by using powder XRD, SEM, FTIR, AES, EDAX, CH analysis and thermoanalytical techniques. The stoichiometric composition for the grown crystals are established as KHC4H4O6.H2O, (K)0.98(Na)0.02.H2O and (K)0.94(Li)0.06HC4H4O6.H2O. Doping of sodium and lithium in the pure potassium hydrogen tartrate single crystals is found to influence the size, perfection, morphology, crystal structure and the thermal stability of crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This study presents the influence of the composition of the carrier gas on the growth of GaN by HVPE. Since no hydrogen is introduced in the vapour phase, the deposition is expected to be controlled by Cl desorption in the form of GaCl3, as has been proposed for GaAs. However, our published model predicts much lower growth rates than those observed. We can account for both the observed parasitic deposition and GaN growth rate if we assume that GaCl3 is not at its equilibrium pressure in the deposition zone and where nucleation takes place on the walls as well as on the substrate. This yields a high rate of parasitic nucleation even though the nominal supersaturation is vanishing small. Very little growth takes place on the substrate where the equilibrium pressure of GaCl3 is reached. We describe similar experiments performed with a H2/N2 mixture as the carrier gas. In this case, we expect GaN deposition to be controlled by desorption of Cl as HCl, which is known as the H2 mechanism. It is speculated that the results show the existence of a new growth mechanism.  相似文献   

17.
A systematic study of structural and electrical properties of GaSb and AlGaSb grown on GaAs by metalorganic chemical vapor deposition is reported. In general, the results obtained from surface morphologies, X-ray linewidths and Hall properties are consistent with each other and indicate that the optimal growth conditions for GaSb are at 525°C around V/III = 1. A highest hole mobility of 652 cm2/V · s at RT (3208 cm2/V · s at 77 K) and a lowest concentration of 2.8 × 1016 cm−3 (1.2 × 1015 cm−3 at 77 K) were obtained for GaSb grown under this optimal condition. Compared to the GaSb growth, a smaller V/III ratio is needed for the AlGaSb growth to protect the surface morphology. When Al was incorporated into GaSb growth, mobility decreased and carrier concentration increased sharply. The AlGaSb grown at 600°C had a background concentration about one order of magnitude lower than the AlGaSb grown at 680°C. Room-temperature current-voltage characteristics of GaSb/AlxGa1 − xSb/GaSb show a rectifying feature when Al composition x is higher than 0.3, suggesting a valence-band discontinuity at the AlGaSb/GaSb interface. A leakage current much higher than the value predicted by the thermionic emission theory is observed at 77 K, presumably due to a large number of dislocations generated by the huge lattice mismatch between GaSb and GaAs.  相似文献   

18.
Bulk properties of gallium (Ga)- and aluminum (Al)-doped zinc oxide (ZnO) were studied using bulky single-crystalline thick films grown by liquid phase epitaxy (LPE). The highest possible dopant concentration was 1×1019 cm–3 for LPE growth at around 800 °C. The electron concentration was nearly same to the Ga and Al concentrations. The donor binding energy decreased to nearly zero with an increase in dopant concentration, and electron mobility of the sample with relatively high dopant concentration (1×1019 cm–3) was more than 60 cm2 V–1 s–1 at room temperature. The LPE technique is a potential solution for the production of ZnO for optical applications because the well-defined excitonic luminescence could be seen from the LPE-grown-doped single-crystals.  相似文献   

19.
GaN nanorods were grown on Si(1 1 1) substrates by using hydride vapor phase epitaxy, and the crystallographic characteristics associated with their preferred growth directions were investigated by utilizing synchrotron X-ray reciprocal space mapping in a grazing incidence geometry and scanning electron microscopy. Crystallographic analysis reveals that the nanorods containing both wurtzite and zinc blende phase tend to have narrower distribution of the preferred growth directions than those containing only wurtzite phase. This tendency is partly attributed to the subtle interplay between polytypism and the preferred growth directions of GaN nanorods.  相似文献   

20.
Copper gallium selenide (CuGaSe2, CGS) layers were grown by the hot wall epitaxy method. The optimum temperatures of the substrate and source for growth turned out to be 450 and 610 °C, respectively. The CGS layers were epitaxially grown along the 1 1 0 direction and consisted of Ga-rich components indicating the slight stoichiometric deviations. Based on the absorption measurement, the band-gap variation of CGS was well interpreted by the Varshni's equation. The band-gap energies at low temperatures, however, had a higher value than those of other CGS. It suggests that the band-gap increase is influenced by the slightly Ga-rich composition. From the low-temperature photoluminescence experiment, sharp and intensive free- and bound-exciton peaks were observed. By analyzing these emissions, a band diagram of the observed optical transitions was obtained. From the solar cell measurement, an 11.17% efficiency on the n-CdS/p-CGS junction was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号