首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A density functional theory study is performed to determine the stability and bonding in the neon dimer inside the B30N30 fullerene cage, the fluxional B40 cage, and within non-fluxional cages such as B12N12 and C60. The nature of bonding in the Ne2 encapsulated B40 is compared with the that in other cages in an attempt to determine whether any possible alterations are brought about by the dynamical nature of the host cage apart from the associated confinement effects. The bonding analysis includes the natural bond order (NBO), Bader’s Atoms-in-Molecules electron density analysis (AIM), and energy decomposition analysis (EDA), revealing the non-covalent nature of the interactions between the Ne atoms and that between the Ne and the cage atoms. The formation of all the Ne2@cage systems is thermochemically unfavourable, the least being that for the B30N30 cage, which can easily be made favourable at lower temperatures. The Ne-Ne distance is lowest in the smallest cage and increases as the cage size increase due to steric relaxation experienced by the dimer. The dynamical picture of the systems is investigated by performing ab initio molecular dynamics simulations using the atom-centred density matrix propagation (ADMP) technique, which shows the nature of the movement of the dimer inside the cages, and by the fact that since it moves as a single entity, a weak bonding force holds them together, apart from their proven kinetic stability.  相似文献   

2.
Density functional theory calculations (DFT), as well as hybrid methods (B3LYP) for B18N18-[CoF6]3− complex have been carried out to study the non-bonded interaction. The geometry of the B18N18 has been optimized at B3LYP method with EPR-II basis set and geometry of the [CoF6]3− have been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. The electromagnetic interactions of the [CoF6]3− molecule embedded in the B18N18 Nano ring have been investigated at B3LYP and total atomic charges, spin densities, dipole moment and isotropic Fermi coupling constants parameters in different loops and bonds of the B18N18-[CoF6]3− system have been calculated. Also NBO analysis such as electronic delocalization between donor and acceptor bonds has been studied by DFT method. Then we have been investigated the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) for the lowest energy have been derived to estimate the structural stability of the B18N18-[CoF6]3− system, and the coefficients of s, p and d orbitals of Co-F bonds involved in B18N18-[CoF6]3−.Thus, hybridization of Co and F atoms can be distinguished based on these NBO data. The Gaussian quantum chemistry package is used for all calculations.  相似文献   

3.
The results of semiempirical calculations on the heterofullerence C24N4 and its boron-nitrogen analogs B6N10C12 (the smallest CBN ball) are presented in accordance with considerations of chemical bondings and geometries. The structures and relative properties of the 28-atom cages, C28, C24N4, and B6N10C12, were investigated using semiempirical methods contained in the MOPAC program. C24N4 and B6N10C12 have Td and C3 symmetry, respectively. B6N10C12 has four geometric isomers, and their optimized structures were determined. The ionization energies, vibrational frequencies, IR intensities, and various thermodynamic properties (including entropy and heat capacity) for C24N4 and B6N10C12 were calculated by the MNDO method. The evidence suggests that a B6N10C12 cage is more stable than that of C24N4. Possible experimental methods to prepare B6N10C12 are also proposed. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Boronic esters are useful building blocks for crystal engineering and the generation of supramolecular architectures, including macrocycles, cages and polymers (one‐, two‐ and three‐dimensional), with potential utility in diverse fields such as separation, storage and luminescent materials. The novel dinuclear cyanophenylboronic ester described herein, namely 4,4′‐(2,4,8,10‐tetraoxa‐3,9‐diboraspiro[5.5]undecane‐3,9‐diyl)dibenzonitrile, C19H16B2N2O4, was prepared by condensation of 4‐cyanophenylboronic acid and pentaerythritol and fully characterized by elemental analysis, IR and NMR (1H and 11B) spectroscopy, single‐crystal X‐ray diffraction analysis and TG‐DSC (thermogravimetry–differential scanning calorimetry) studies. In addition, the photophysical properties were examined in solution and in the solid state by UV–Vis and fluorescence spectroscopies. Density functional theory (DFT) calculations with ethanol as solvent reproduced reasonably well the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) of the title compound. Hirshfeld surface and fingerprint plot analyses are presented to illustrate the supramolecular connectivity in the solid state.  相似文献   

5.
The structure and frequencies of C12B24N24 have been calculated by means of an ab initio method. By comparing the average bond energies with C60, the calculated results predict that the cage C12B24N24 is a stable molecule. The calculated results indicate that the cage molecule C12B24N24 has a relative large HOMO–LUMO energy gap and a low rigidity. The structures and stability of six possible isomers of C2B4N4 are used to suggest a possible transformation path from the pentagon CB2N2 to the C12B24N24 materials. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 363–368, 2001  相似文献   

6.
First‐principles calculations are used to explore the strong binding of lithium to boron‐ and carbon‐doped BC2N monolayers (BC2NBC and BC2NCN, respectively) without the formation of lithium clusters. In comparison to BC2N and BC2NCB, lithium‐decorated BC2NBC and BC2NCN systems possess stronger s–p and p–p hybridization and, hence, the binding energy is higher. Lithium becomes partially positively charged by donating electron density to the more electronegative atoms of the sheet. Attractive van der Waals interactions are responsible for binding hydrogen molecules around the lithium atoms. Each lithium atom can adsorb three hydrogen molecules on both sides of the sheet, with an average hydrogen binding energy of approximately 0.2 eV, which is in the range required for practical applications. The BC2NBC–Li and BC2NCN–Li complexes can serve as high‐capacity hydrogen‐storage media with gravimetric hydrogen capacities of 9.88 and 9.94 wt %, respectively.  相似文献   

7.
A novel homotrinuclear pyridine Schiff base copper(II) compound, [Cu3(C15H11N2O4)2(C5H5N)2], has been synthesized and characterized by elemental analysis and X-ray single crystal deterimination. X-ray structural determination reveals that each copper(II) ion has a distorted square-planar geometry. The central copper ion is coordinated by two O and two N atoms from two Schiff base ligands, while each terminal copper ion is coordinated by one N and two O atoms of one Schiff base ligand and by one N atom of a pyridine molecule. Density funcational theory (DFT) method calculations of the structure, atomic charges distribution and natural bond orbital (NBO) analyses have been performed. The coordinate stabilization energies show that the trinuclear copper(II) compound is very stable.  相似文献   

8.
The theoretical investigations on TM@C24 (TM = Mn, Fe, Co, Ni, Cu, and Zn) with different spin configurations have been performed by using the hybrid DFT‐B3PW91 functional in conjunction with 6‐31G(d) basis sets. The results show that the ground states of Fe@C24 and Ni@C24 are their spin triplet states, whereas the ground state of Co@C24 is spin quartet state. Moreover, three Fe@C24 isomers are favorable in energy. The HOMO and LUMO of Zn@C24 indicates that there is no hybridization between Zn atomic orbitals and the C24 cage orbitals. Natural population analysis shows that the charges always transfer from the TM atoms to the C24 cage. In going from isolated TM atom to TM@C24, the occupation of the 4s orbital is strongly reduced. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

9.
《印度化学会志》2023,100(1):100812
Predicting adsorption behavior of the Triacanthine (TRC) anticancer drug on the surface of B12N12 nano-cage was investigated using DFT and TD-DFT methods by B3LYP/6-311+G(d) level in the water solution. The adsorption energies of the TRC-B12N12 complexes (A-C) were shown that the adsorption process is exothermic. The UV/Vis absorption and IR spectra analysis were calculated to investigate the changes happening in adsorption of TRC over nano-cage. According to the results, the interaction of the TRC drug from the N9 atom on the B12N12 nano-cage (model A) has the most chemical stability rather than models B and C. Based on NBO analysis, the charge transfer process has happened between the TRC drug and B12N12 nano-cage. Recovery time, charge difference (ΔN), and ELF analysis were calculated. It was understood that the B12N12 nano-cage can be a good carrier for the delivery of TRC anticancer medicine.  相似文献   

10.
1,3-Diazido-2-methyl-2-nitropropane (DAMNP) is a newly synthesized azido compound and may be a potential candidate of the plasticizer of propellants. For better understanding its properties, the molecular conformations, electronic structure, IR spectrum, thermodynamic properties, pyrolysis mechanism, and specific impulse (I S) were studied using the B3LYP/6-31++G** method of density functional theory (DFT). The electronic structure of DAMNP was analyzed by the natural atomic charges, bond orders, donor–acceptor interactions, and molecular electrostatic potential (MEP). Results show that the main contributions to the highest occupied molecular orbital and the lowest unoccupied molecular orbital are from –N3 and –NO2, respectively. The most negative area on the MEP locates at the O atoms of –NO2, which agrees with the atomic charges distributions. The pyrolysis mechanism was investigated by considering three possible bond dissociations (C–N3, C–NO2, and N–N2). Results show that the pyrolysis of DAMNP starts from the rupture of N–N2 finished cooperatively via the H-transfer process to eliminate N2. The lowest energy needed for pyrolysis is 165.13 kJ mol?1. To verify the reliability of the method, the organic azido compound CH3N3 was also considered. DAMNP has a slightly higher thermal stability than CH3N3. However, using DAMNP to replace the plasticizer nitroglycerin of the nitramine modified double-base propellant leads to a decrease in I S. Therefore, whether DAMNP can be really used as a plasticizer or not is worth further considerations.  相似文献   

11.
Phthalocyanine (Pc) molecules are well‐known flexible structural units for 1D nanotubes and 2D nanosheets. First‐principles calculations combined with grand canonical Monte Carlo simulations are used to obtain the geometries, electronic structures, optical properties, and hydrogen‐storage capacities of nanocages consisting of six Pc molecules with six Mg or Ca atoms. The primitive Pc cage has Th symmetry with twofold degeneracy in the highest occupied molecular orbital (HOMO), and threefold degeneracy in the lowest unoccupied molecular orbital (LUMO); the corresponding HOMO–LUMO gap is found to be 0.97 eV. The MgPc and CaPc cages have Oh symmetry with a HOMO–LUMO gap of 1.24 and 1.13 eV, respectively. Optical absorption spectra suggest that the Pc‐based cages can absorb infrared light, which is different from the visible‐light absorption in Pc molecules. We further show that the excess uptake of hydrogen on MgPc and CaPc cages at 298 K and 100 bar (1 bar=0.1 MPa) is about 3.49 and 4.74 wt %, respectively. The present study provides new insight into Pc‐based nanostructures with potential applications.  相似文献   

12.
A perfect hybrid complex C60(FeCp)12 is predicted using density functional theory method. This fullerene derivative could be view as a C60 cage of which each C5 ring coordinates a (FeCp) ligand. Theoretical calculation reveals that it has a large lowest unoccupied molecular orbital–highest unoccupied molecular orbital gap (2.53 eV) and keeps the Ih symmetry of C60. But the C? C bond length of its inner C60 cage trends to be uniform, which is quite different from the bonding character of C60 fullerene. Further investigation reveals that the chemical bonding, TDOS and the aromaticity of the (C5FeCp) unit in C60(FeCp)12 are similar as those of ferrocene molecule, which indicates the similarity of their electronic properties. So, this compound could be viewed as the combination of ferrocene molecules. Thus, its unconventional formation process from 12 Fe(Cp)2 is proposed and the reaction energy is calculated. As the C60(FeCp)12 compound has the geometry framework as C60 and the electronic characters as ferrocene, it would inherit the outstanding properties from both two molecules and have wild potential applications in nanochemistry. We hope our study could give some references for the further investigation and experimental synthesis research of the C60(FeCp)12 compound. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Electron‐donating molecules play an important role in the development of organic solar cells. (Z )‐2‐(2‐Phenylhydrazinylidene)acenaphthen‐1(2H )‐one (PDAK), C18H12N2O, was synthesized by a Schiff base reaction. The crystal structure shows that the molecules are planar and are linked together forming `face‐to‐face' assemblies held together by intermolecular C—H…O, π–π and C—H…π interactions. PDAK exhibits a broadband UV–Vis absorption (200–648 nm) and a low HOMO–LUMO energy gap (1.91 eV; HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied molecular orbital), while fluorescence quenching experiments provide evidence for electron transfer from the excited state of PDAK to C60. This suggests that the title molecule may be a suitable donor for use in organic solar cells.  相似文献   

14.
The molecular structure of the title salt, C11H17N4+·H2PO4, has been determined from single‐crystal X‐ray analysis and compared with the structure calculated by density functional theory (DFT) at the BLYP level. The crystal packing in the title compound is stabilized primarily by intermolecular N—H...O, O—H...N and O—H...O hydrogen bonds and π–π stacking interactions, and thus a three‐dimensional supramolecular honeycomb network consisting of R42(10), R44(14) and R44(24) ring motifs is established. The HOMO–LUMO energy gap (1.338 eV; HOMO is the highest occupied molecular orbital and LUMO is the lowest unoccupied molecular orbital) indicates a high chemical reactivity for the title compound.  相似文献   

15.
Density functional theory calculations (B3LYP/6-311G*) are applied to devise a series of AlN-substituted C60 fullerenes, avoiding weak homonuclear Al–Al and N–N bonds. The substitutional structures, energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, ionization potentials, binding energies, as well as dipole moments have been systematically investigated. The band gap (HOMO–LUMO gap) is larger for all the AlN-substituted fullerenes than C60. The properties of heterofullerenes, especially, the HOMO–LUMO strongly depend on the number of AlN units. Natural charge analyses indicate that doping of fullerene with AlN units exerts electronic environment diversity to the cage. High charge transfer on the surfaces of our heterofullerenes provokes more studies on their possible application for hydrogen storage.  相似文献   

16.
The structural characteristics, chemical bonding and electrochemical properties of the heteroatom-substituted carbons synthesized by arc discharge and chemical vapor deposition have been investigated. CxN was prepared only as a soot by arc discharge in nitrogen atmosphere; BCx and BxCyNz were obtained both as soot and cathode deposits by arc discharge of graphite rods having B4C and boron nitride (BN) in argon and nitrogen atmospheres, respectively. Transmission electron microscopic study showed that CxN, BCx and BxCyNz soots were composed of nanoparticles with diameters of 20–100 nm, while cathode deposits contained nanotubes with diameters of ca. 20 nm or less and nanoparticles with diameters less than 100 nm. It was found from XPS study that CxN contained a large amount of pyridine type nitrogen atoms at the edge of graphene layer; the BBC2 structure was dominant in BCx; and B3N, B2NC and BNC2 structures might exist in BxCyNz. Carbon- and CxN-coated graphite were prepared by deposition of carbon and CxN onto natural graphite powder, respectively. The concentrations of coated CxN layers were between C21N and C62N. Charge–discharge profiles of CxN, BCx and BxCyNz soots prepared by arc discharge were similar to each other, giving linearly increasing potential with lithium ion deintercalation. CxN soot heat-treated at 3000°C showed a similar profile for charge–discharge curves to that of graphite with a charge capacity of 334 mAh g−1. On the other hand, CxN-coated graphite exhibited as high as 397 mAh g−1 larger than ∼365 mAh g−1 for carbon-coated graphite and that of heat-treated CxN soot.  相似文献   

17.
The corrosion‐inhibition efficiency of N‐decyl‐1,2,4‐triazole, N‐undecyl‐1,2,4‐triazole, and N‐dodecyl‐1,2,4‐triazole surfactants and the corresponding protonated molecules have been studied computationally using density functional theory and second‐order Møller–Plesset calculations. Corrosion‐inhibition properties and the strength of the affinity of the iron‐surfactant molecules were estimated by using an appropriate cluster model. The iron‐surfactant complexes were constructed by attaching the triazole ring to the iron surface modeled by one and five iron atoms, respectively. Relations between molecular properties and corrosion‐inhibition efficiency were determined by using linear regression and quantitative structure–activity relationship (QSAR). The QSAR analysis yielded significant correlations between the corrosion‐inhibition activity of the studied molecules with molecular properties such as the highest occupied molecular orbital, the lowest unoccupied molecular orbital, dipole moments (μ), and the total atomic charges. Fukui indexes were also calculated for assessing correlations between them and experimental corrosion‐inhibition efficiencies. Solvent effects were investigated by using the polarized continuum model. The effects of the acidity medium and the local reactivity of the triazole derivatives with iron were also analyzed. The calculated binding energy of 276 kJ/mol for the Fe5N‐dodecyl‐1,2,4‐triazole cluster shows that the surfactant molecules bind strongly to iron surfaces, which is in agreement with experimental data. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The unexplored carbon rich cationic closo carboranes, C3Bn?3Hn+1 (n=5, 6, 7, 10, 12) are investigated theoretically. The position isomers were calculated at the B3LYP/6‐31G* level, and the charge distribution in the cluster is estimated by NBO analysis. The criterion of ring‐cap orbital overlap compatibility along with the number of B? C, C? C, and B? B bonds help in explaining the stability order in each category. The most stable isomer is the one with maximum ring‐cap orbital overlap and largest number of B? C bonds. The order of relative stability among the trigonal bipyramid is 1c > 1b > 1a ′, where the stability is proportional to the number of CH caps over the small three‐membered ring. The C3B3H6+ isomer with the one allyl C3 group ( 2b ) is more favorable than the one with a cyclopropenyl group ( 2a ). Among the C3B4H7+ isomers the stability order is 3e > 3d > 3c > 3b > 3a , which mostly depends on the ring‐cap orbital overlap. In the bicapped square antiprism (4) where there is large number of isomers, the order follows the rule of ring cap compatibility and the number of B? C bonds. The order of 5e > 5d > 5c > 5b > 5a obtained from the calculations is in perfect agreement with the above sited rules. Equations (1) – (5) devised for estimating the stability of isomers of C3Bn?3Hn+ indicate an increase in stability with cage size. The mono‐positive charge of the isomers is distributed throughout the cage, making them suitable candidates as weakly electrophillic cations. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1542–1551, 2001  相似文献   

19.
It is shown by density functional theory calculations that high symmetry silicon cages can be designed by coating with Li atoms. The resulting highly symmetric lithiated silicon cages (up to D5d symmetry) are low‐lying true minima of the energy hypersurface with binding energies of the order of 4.6 eV per Si atom and moderate highest occupied molecular orbital–lowest unoccupied molecular orbital gaps. Moreover, relying on a systematic study of the electric response properties obtained by ab initio (Hartree–Fock, MP2, and configuration interaction singles (CIS)) and density functional (B3LYP, B2PLYP, and CAM‐B3LYP) methods, it is shown that lithium coating has a large impact on the magnitude of their second hyperpolarizabilities resulting to highly hyperpolarizable species. Such hyperpolarizable character is directly connected to the increase in the density of the low‐lying excited states triggered by the interaction between the Si cage and the surrounding Li atoms. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The effect of different donor nitrogen atoms on the strength and nature of intramolecular Se ??? N interactions is evaluated for organoselenium compounds having N,N‐dimethylaminomethyl (dime), oxazoline (oxa) and pyridyl (py) substituents. Quantum chemical calculations on three series of compounds [2‐(dime)C6H4SeX ( 1 a – g ), 2‐(oxa)C6H4SeX ( 2 a – g ), 2‐(py)C6H4SeX ( 3 a – g ); X=Cl, Br, OH, CN, SPh, SePh, CH3] at the B3LYP/6‐31G(d) level show that the stability of different conformers depends on the strength of intramolecular nonbonded Se ??? N interactions. Natural bond orbital (NBO), NBO deletion and atoms in molecules (AIM) analyses suggest that the nature of the Se ??? N interaction is predominantly covalent and involves nN→σ*Se? X orbital interaction. In the three series of compounds, the strength of the Se ??? N interaction decreases in the order 3 > 2 > 1 for a particular X, and it decreases in the order Cl>Br>OH>SPh≈CN≈SePh>CH3 for all the three series 1 – 3 . However, further analyses suggest that the differences in strength of Se ??? N interaction in 1 – 3 is predominantly determined by the distance between the Se and N atoms, which in turn is an outcome of specific structures of 1 , 2 and 3 , and the nature of the donor nitrogen atoms involved has very little effect on the strength of Se ??? N interaction. It is also observed that Se ??? N interaction becomes stronger in polar solvents such as CHCl3, as indicated by the shorter rSe ??? N and higher ESe ??? N values in CHCl3 compared to those observed in the gas phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号