首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Following the classical concepts developed by Simon [Z. Anorg. Allg. Chem. 203, 219 (1931)], vitrification in the cooling of glass-forming melts is commonly interpreted as the transformation of a thermodynamically (meta)stable equilibrium system into a frozen-in, thermodynamically nonequilibrium system, the glass. Hereby it is assumed that the transformation takes place at some well-defined sharp temperature, the glass transition temperature Tg. However, a more detailed experimental and theoretical analysis shows that the transition to a glass proceeds in a broader temperature range, where the characteristic times of change of temperature, tauT=-(TT), and relaxation times, tau, of the system to the respective equilibrium states are of similar order of magnitude. In this transition interval, the interplay of relaxation and change of external control parameters determines the value of the structural order parameters. In addition, irreversible processes take place in the transition interval, resulting both in an entropy freezing-in as well as in an irreversible increase of entropy and, as a result, in significant changes of all other thermodynamic parameters of the vitrifying systems. The effect of entropy production on glass transition and on the properties of glasses is analyzed here for the first time. In this analysis, the structural order-parameter concept as developed by de Donder and van Rysselberghe [Thermodynamic Theory of Affinity (Stanford University Press, Stanford, 1936)] and Prigogine and Defay [Chemical Thermodynamics (Longmans, London, 1954)] is employed. In the framework of this approach we obtain general expressions for the thermodynamic properties of vitrifying systems such as heat capacity, enthalpy, entropy, and Gibbs' free energy, and for the entropy production. As one of the general conclusions we show that entropy production has a single maximum upon cooling and two maxima upon heating in the glass transition interval. The theoretical concepts developed allow us to explain in addition to the thermodynamic parameters also specific features of the kinetic parameters of glass-forming melts such as the viscosity. Experimental results are presented which confirm the theoretical conclusions. Further experiments are suggested, allowing one to test several additional predictions of the theory.  相似文献   

2.
A method of free energy calculation is proposed, which enables to cover a wide range of pressure and temperature. The free energies of proton-disordered hexagonal ice (ice Ih) and liquid water are calculated for the TIP4P [J. Chem. Phys. 79, 926 (1983)] model and the TIP5P [J. Chem. Phys. 112, 8910 (2000)] model. From the calculated free energy curves, we determine the melting point of the proton-disordered hexagonal ice at 0.1 MPa (atmospheric pressure), 50 MPa, 100 MPa, and 200 MPa. The melting temperatures at atmospheric pressure for the TIP4P ice and the TIP5P ice are found to be about T(m)=229 K and T(m)=268 K, respectively. The melting temperatures decrease as the pressure is increased, a feature consistent with the pressure dependence of the melting point for realistic proton-disordered hexagonal ice. We also calculate the thermal expansivity of the model ices. Negative thermal expansivity is observed at the low temperature region for the TIP4P ice, but not for the TIP5P ice at the ambient pressure.  相似文献   

3.
For nonpolymeric supercooled liquids, the empirical correlation m = 56Tg DeltaCp(Tg)/DeltaHm provides a reliable means of correlating dynamic and thermodynamic variables. The dynamics are characterized by the fragility or steepness index m and the glass transition temperature Tg, while thermodynamics enter in terms of the heat capacity step DeltaCp at Tg and the melting enthalpy DeltaHm. The combination of the above correlation with the 23 rule for the Tg/Tm ratio yields an expression, m = 40DeltaCp(Tg)/DeltaSm, which was rationalized as the correlation of the thermodynamic and kinetic fragilities. Defining a thermodynamic fragility via DeltaCp(Tg)/DeltaSm also reveals that the slopes in Kauzmann's original DeltaS(T)/DeltaSm versus T/Tm plot reflect the fragility concept [Chem. Rev. 43, 219 (1948)], so long as Tm/Tg = 1.5. For the many liquids whose excess heat capacity is a hyperbolic function of temperature, we deduce that the fragility cannot exceed m = 170, unless the Tg/Tm = 2/3 rule breaks down.  相似文献   

4.
Sulfur difluoride radicals in their ground state have been produced by a "laser-free" pulsed dc discharge of the SF6Ar gas mixtures in a supersonic molecular beam and detected by mass-selective resonance-enhanced multilphoton ionization (REMPI) spectroscopy in the wavelength range of 408-420 nm. Analyses of the (3+1) REMPI excitation spectrum have enabled identification of three hitherto unknown Rydberg states of this radical. Following the Rydberg state labeling in our previous work [see J. Phys. Chem. A 102, 7233 (1998)], these we label the K(5p1) [nu 0-0=71 837 cm(-1), omega'1(a1 sym str)=915 cm(-1)], L(5p2) [nu 0-0=72 134 cm(-1), omega'1(a1 sym str)=912 cm(-1)], and M(5p3) [nu 0-0=72 336 cm(-1), omega'1(a1 sym str)=926 cm(-1)] Rydberg states, respectively. [Origins, relative to the lowest vibrational level of the X 1A1 ground state, and vibrational frequencies of the symmetric S-F stretching mode are suggested by the numbers in brackets.] Photofragmentation process of SF2+-->SF+ +F that relates to the REMPI spectrum was discussed.  相似文献   

5.
In this work, a general equation of state (EOS) recently derived by Grzybowski et al. [Phys. Rev. E 83, 041505 (2011)] is applied to 51 molecular and ionic liquids in order to perform density scaling of pVT data employing the scaling exponent γ(EOS). It is found that the scaling is excellent in most cases examined. γ(EOS) values range from 6.1 for ammonia to 13.3 for the ionic liquid [C(4)C(1)im][BF(4)]. These γ(EOS) values are compared with results recently reported by us [E. R. López, A. S. Pensado, M. J. P. Comu?as, A. A. H. Pádua, J. Fernández, and K. R. Harris, J. Chem. Phys. 134, 144507 (2011)] for the scaling exponent γ obtained for several different transport properties, namely, the viscosity, self-diffusion coefficient, and electrical conductivity. For the majority of the compounds examined, γ(EOS) > γ, but for hexane, heptane, octane, cyclopentane, cyclohexane, CCl(4), dimethyl carbonate, m-xylene, and decalin, γ(EOS) < γ. In addition, we find that the γ(EOS) values are very much higher than those of γ for alcohols, pentaerythritol esters, and ionic liquids. For viscosities and the self-diffusion coefficient-temperature ratio, we have tested the relation linking EOS and dynamic scaling parameters, proposed by Paluch et al. [J. Phys. Chem. Lett. 1, 987-992 (2010)] and Grzybowski et al. [J. Chem. Phys. 133, 161101 (2010); Phys. Rev. E 82, 013501 (2010)], that is, γ = (γ(EOS)/φ) + γ(G), where φ is the stretching parameter of the modified Avramov relation for the density scaling of a transport property, and γ(G) is the Gru?neisen constant. This relationship is based on data for structural relaxation times near the glass transition temperature for seven molecular liquids, including glass formers, and a single ionic liquid. For all the compounds examined in our much larger database the ratio (γ(EOS)/φ) is actually higher than γ, with the only exceptions of propylene carbonate and 1-methylnaphthalene. Therefore, it seems the relation proposed by Paluch et al. applies only in certain cases, and is really not generally applicable to liquid transport properties such as viscosities, self-diffusion coefficients or electrical conductivities when examined over broad ranges of temperature and pressure.  相似文献   

6.
The helix-coil transition of poly[d(I-C)] and poly[d(A-T)] was studied as a function of hydrostatic pressure, temperature, and sodium ion concentration. These studies were undertaken in light of a recently published phase diagram for double stranded nucleic acids [Dubins et al. J. Am. Chem. Soc. 2001, 123, 9254-9259]. The sign and magnitude of the volume change for the heat-induced helix-coil transition, DeltaV(T), of poly[d(I-C)] and poly[d(A-T)] were dependent on the helix-coil transition temperature, T(M), at atmospheric pressure. The sign of DeltaV(T) changed from negative to positive as T(M) was increased by increasing the sodium ion concentration. For poly[d(I-C)], DeltaV(T) = 0 cm(3) mol(-1), when the sodium ion concentration is such that the spectroscopically monitored T(M) = 55 degrees C at atmospheric pressure. For poly[d(A-T)], the value of DeltaV(T) = 0 under conditions such that T(M) = 47 degrees C at atmospheric pressure. Negative values of DeltaV(T) imply that the helical form is destabilized at high pressure. Under experimental conditions where the DeltaV(T) for the transition is negative, the transition could be caused by increasing the pressure under isothermal conditions. At temperatures below T(M) measured at atmospheric pressure the midpoint of the pressure-induced helix-coil transition, P(M), decreases with increasing temperature. The volume change of the pressure-induced transitions helix-coil transition, DeltaV(P), was calculated assuming a two-state model. The magnitude of DeltaV(P) (per cooperative length) was much larger than the volume change (per base pair) measured for the heat-induced transition, DeltaV(T), calculated using the Clapeyron equation. The ratio of these two volume changes was used to calculate the cooperative length for the pressure-induced transition. This parameter depends strongly on temperature, becoming greater closer to T(M) measured at atmospheric pressure. At temperatures approaching T(M) the magnitude of the cooperative length of the pressure-induced transition is approximately twice that observed for the heat-induced transition (N(T)). On the basis of the temperature dependence of the DeltaV(T) for the two polymers the coefficient of thermal expansion of the two polymers was found to be 0.17 and 0.16 cm(3) K(-1) mol(-1) for poly[d(I-C)] and poly[d(A-T)], respectively.  相似文献   

7.
Broadband dielectric measurements were carried out at isobaric and isothermal conditions up to 1.75 GPa for reconsidering the relaxation dynamics of decahydroisoquinoline, previously investigated by Richert et al. [R. Richert, K. Duvvuri, and L.-T. Duong, J. Chem. Phys. 118, 1828 (2003)] at atmospheric pressure. The relaxation time of the intense secondary relaxation tau(beta) seems to be insensitive to applied pressure, contrary to the alpha-relaxation times tau(alpha). Moreover, the separation of the alpha- and beta-relaxation times lacks correlation between shapes of the alpha-process and beta-relaxation times, predicted by the coupling model [see for example, K. L. Ngai, J. Phys.: Condens. Matter 15, S1107 (2003)], suggesting that the beta process is not a true Johari-Goldstein (JG) relaxation. From the other side, by performing measurements under favorable conditions, we are able to reveal a new secondary relaxation process, otherwise suppressed by the intense beta process, and to determine the temperature dependence of its relaxation times, which is in agreement with that of the JG relaxation.  相似文献   

8.
Pressure-temperature-volume (pVT) measurements were carried out on 2-(4-hexyloxyphenyl)-5-octyl-pyrimidine, a substance exhibiting nematic and smectic A and C polymorphism. Analysis of the longitudinal relaxation times obtained recently for elevated pressures [Czub et al., Z. Naturforsch. A: Phys. Sci. 58, 333 (2003)] was performed for isobaric, isothermal, and isochoric conditions within the two smectic phases. Several relationships linking the dynamical and thermodynamical quantities, derived recently for isotropic glass formers [Roland et al. Rep. Prog. Phys. 68, 1405 (2005)], were found to hold for the liquid crystal, revealing a striking similarity of behaviors for these two types of materials. The parameter gamma characterizing the steepness of the interaction potential was derived in different ways. It is interesting that the liquid crystal gives relaxation time versus TV(-gamma) plots that are linear, unlike results for glass formers, implying that the dynamics of the former is thermally activated.  相似文献   

9.
One of the most intriguing phenomena in glass forming systems is the dynamic crossover (T(B)), occurring well above the glass temperature (T(g)). So far, it was estimated mainly from the linearized derivative analysis of the primary relaxation time τ(T) or viscosity η(T) experimental data, originally proposed by Stickel et al. [J. Chem. Phys. 104, 2043 (1996); J. Chem. Phys. 107, 1086 (1997)]. However, this formal procedure is based on the general validity of the Vogel-Fulcher-Tammann equation, which has been strongly questioned recently [T. Hecksher et al. Nature Phys. 4, 737 (2008); P. Lunkenheimer et al. Phys. Rev. E 81, 051504 (2010); J. C. Martinez-Garcia et al. J. Chem. Phys. 134, 024512 (2011)]. We present a qualitatively new way to identify the dynamic crossover based on the apparent enthalpy space (H(a) (')=dlnτ/d(1/T)) analysis via a new plot lnH(a) (') vs. 1∕T supported by the Savitzky-Golay filtering procedure for getting an insight into the noise-distorted high order derivatives. It is shown that depending on the ratio between the "virtual" fragility in the high temperature dynamic domain (m(high)) and the "real" fragility at T(g) (the low temperature dynamic domain, m = m(low)) glass formers can be splitted into two groups related to f < 1 and f > 1, (f = m(high)∕m(low)). The link of this phenomenon to the ratio between the apparent enthalpy and activation energy as well as the behavior of the configurational entropy is indicated.  相似文献   

10.
It is pointed out that the temperature fitting function of W?lk and Strey [J. Phys. Chem. 105, 11683 (2001)], recently shown to convert the Becker-D?ring [Ann. Phys. (Leipzig) 24, 719 (1935)] nucleation rate into an expression in agreement with much of the experimental water nucleation rate data, also converts the Becker-D?ring rate into a form nearly equivalent with the scaled nucleation rate model, J(scaled)=J(oc) exp[-16piOmega(3)(T(c)T-1)(3)3(ln S)(2)]. In the latter expression J(oc) is the inverse thermal wavelength cubed/sec, evaluated at T(c).  相似文献   

11.
The molecular structure of bis-5-hydroxypentylphthalate (BHPP) is like dihexyl phthalate but having appended to it two hydroxyl end groups, which contribute additional dipole moments and capacity for hydrogen-bond formation. In a previously published dielectric study of the primary and secondary relaxations of BHPP, it was found that all the dynamic properties are normal except for the anomalously large width of the primary relaxation loss peak. There are two secondary relaxations, the relaxation time of the slower one increases with increasing pressure, whereas that of the faster one is practically insensitive to pressure. Hence, the slower secondary relaxation is the "universal" Johari-Goldstein (JG) [J. Chem. Phys. 53, 2372 (1970); 55, 4245 (1971)] relaxation in BHPP. All is well except if the observed large width of the primary relaxation were an indication of a corresponding large coupling parameter n=0.45 in the coupling model. Then the predicted relations between the primary relaxation time tau(alpha) and the JG relaxation time tau(JG) found previously to hold in many glass formers would be violated. It was recognized that this singular behavior of BHPP is likely due to broadening of the primary loss peak by the overlapping contributions of two independent dipole moments present in BHPP, and the actual coupling parameter is smaller. However, at the time of publication of the previous work there were not enough data to support this explanation. By making broadband dielectric measurements of dibutyl phthalate (DBP) and dioctyl phthalate (DOP) that have chemical structures closely related to BHPP but with only one dipole moment, we show that all their dynamic properties are almost the same as BHPP but the widths of their primary relaxation loss peaks are significantly narrower corresponding to a smaller coupling parameter n=0.34. The new data presented here indicate that the coupling parameter of BHPP is about the same as DBP and DOP, and the predicted relations between tau(alpha) and tau(JG) of BHPP are brought back in agreement with the experimental data.  相似文献   

12.
In a recent analysis, Angell [Annu. Rev. Phys. Chem. 55, 559 (2004)] concluded that if water's Tg is assumed to be 160 K, the plot of dielectric loss tangent tan delta against T/Tg for unsintered amorphous solid water overlaps the corresponding plots for glycerol and propylene carbonate. We point out that such an analysis falsifies both dielectrics and molecular kinetics, and is not useful for ascertaining Tg.  相似文献   

13.
Pure rotational transitions in the ground state for Ar-OH and Ar-OD [Y. Ohshima et al., J. Chem. Phys. 95, 7001 (1991) and Y. Endo et al., Faraday Discuss. 97, 341 (1994)], those in the excited states of the OH vibration, nu(s)=1 and 2, observed by Fourier-transform microwave spectroscopy in the present study, rotation-vibration transitions observed by infrared-ultraviolet double-resonance spectroscopy [K. M. Beck et al., Chem. Phys. Lett. 162, 203 (1989) and R. T. Bonn et al., J. Chem. Phys. 112, 4942 (2000)], and the P-level structure observed by stimulated emission pumping spectroscopy [M. T. Berry et al., Chem. Phys. Lett. 178, 301 (1991)] have been simultaneously analyzed to determine the potential energy surface of Ar-OH in the ground state. A Schrodinger equation, considering all the freedom of motions for an atom-diatom system in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational energy levels using the discrete variable representation method. A three-dimensional potential energy surface is determined by a least-squares fitting. In the analysis the potential parameters, obtained by ab initio calculations at the RCCSD(T) level of theory with a set of basis functions of aug-cc-pVTZ and midbond functions, are used as initial values. The determined intermolecular potential energy surface and its dependence on the OH monomer bond length are compared with those of an isovalent radical complex, Ar-SH.  相似文献   

14.
The kinetics of the reaction HBrO(2) + HBrO(2) --> HOBr + BrO(3)(-) + H(+) is investigated in aqueous HClO(4) (0.04-0.9 M) and H(2)SO(4) (0.3-0.9 M) media and at temperatures in the range 15-38 degrees C. The reaction is found to be cleanly second order in [HBrO(2)], with the experimental rate constant having the form k(exp) = k + k'[H(+)]. The half-life of the reaction is on the order of a few tenths of a second in the range 0.01 M < [HBrO(2)](0) < 0.02 M. The detailed mechanism of this reaction is discussed. The activation parameters for kare found to be E(double dagger) = 19.0 +/- 0.9 kJ/mol and DeltaS(double dagger) = -132 +/- 3 J/(K mol) in HClO(4), and E(double dagger) = 23.0 +/- 0.5 kJ/mol and DeltaS(double dagger) = -119 +/- 1 J/(K mol) in H(2)SO(4). The activation parameters for k' are found to be E(double dagger) = 25.8 +/- 0.5 kJ/mol and DeltaS(double dagger) = -106 +/- 1 J/(K mol) in HClO(4), and E(double dagger) = 18 +/- 3 kJ/mol and DeltaS(double dagger) = -130 +/- 11 J/(K mol) in H(2)SO(4). The values Delta(f)H(29)(8)(0)[BrO(2)(aq)] = 157 kJ/mol and Delta(f)H(29)(8)(0)[HBrO(2)(aq)] = -33 kJ/mol are estimated using a trend analysis (bond strengths) based on the assumption Delta(f)H(29)(8)(0)[HBrO(2)(aq)] lies between Delta(f)H(29)(8)(0)[HOBr(aq)] and Delta(f)H(29)(8)(0)[HBrO(3)(aq)] as Delta(f)H(29)(8)(0)[HClO(2)(aq)] lies between Delta(f)H(29)(8)(0)[HOCl(aq)] and Delta(f)H(29)(8)(0)[HClO(3)(aq)]. The estimated value of Delta(f)H(29)(8)(0)[BrO(2)(aq)] agrees well with calculated gas-phase values, but the estimated value of Delta(f)H(29)(8)(0)[HBrO(2)(aq)], as well as the tabulated value of Delta(f)H(29)(8)(0)[HClO(2)(aq)], is in substantial disagreement with calculated gas-phase values. Values of Delta(r)H(0) are estimated for various reactions involving BrO(2) or HBrO(2).  相似文献   

15.
We report the first solid state X-ray crystal structure for a Eu(II) chelate, [C(NH2)3]3[Eu(II)(DTPA)(H2O)].8H2O, in comparison with those for the corresponding Sr analogue, [C(NH2)3]3[Sr(DTPA)(H2O).8H2O and for [Sr(ODDA)].8H2O (DTPA5 = diethylenetriamine-N,N,N',N",N"-pentaacetate, ODDA2- =1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diacetate ). The two DTPA complexes are isostructural due to the similar ionic size and charge of Sr(2+) and Eu(2+). The redox stability of [Eu(II)(ODDA)(H2O)] and [Eu(II)(ODDM)]2- complexes has been investigated by cyclovoltammetry and UV/Vis spectrophotometry (ODDM4- =1,4,10,13-tetraoxa-7,16-diaza-cyclooctadecane-7,16-++ +dimalonate). The macrocyclic complexes are much more stable against oxidation than [Eu(II)(DTPA)(H2O)]3- (the redox potentials are E1/2 =-0.82 V, -0.92 V, and -1.35 V versus Ag/AgCl electrode for [Eu(III/II)(ODDA)(H2O)],[Eu(III/II)(ODDM)], and [Eu(III/II)(DTPA)(H2O)], respectively, compared with -0.63 V for Eu(III/II) aqua). The thermodynamic stability constants of [Eu(II)(ODDA)(H2O)], [Eu(II)(ODDM)]2-, [Sr(ODDA)(H2O)], and [Sr(ODDM)]2- were also determined by pH potentiometry. They are slightly higher for the EuII complexes than those for the corresponding Sr analogues (logK(ML)=9.85, 13.07, 8.66, and 11.34 for [Eu(II)(ODDA)(H2O)], [Eu(II)(ODDM)]2-, [Sr(ODDA)(H2O)], and [Sr(ODDM)]2-, respectively, 0.1M (CH3)4NCl). The increased thermodynamic and redox stability of the Eu(II) complex formed with ODDA as compared with the traditional ligand DTPA can be of importance when biomedical application is concerned. A variable-temperature 17O-NMR and 1H-nuclear magnetic relaxation dispersion (NMRD) study has been performed on [Eu(II)(ODDA)(H2O)] and [Eu(II)(ODDM)]2- in aqueous solution. [Eu(II)(ODDM)]2- has no inner-sphere water molecule which allowed us to use it as an outer-sphere model for [Eu(II)(ODDA)(H2O)]. The water exchange rate (k298(ex)= 0.43 x 10(9)s(-1)) is one third of that obtained for [Eu(II)(DTPA)(H2O)]3-. The variable pressure 17O-NMR study yielded a negative activation volume, deltaV (not=) = -3.9cm3mol(-1); this indicates associatively activated water exchange. This water exchange rate is in the optimal range to attain maximum proton relaxivities, which are, however, strongly limited by the fast rotation of the small molecular weight complex.  相似文献   

16.
17.
Following up our preliminary communication [Kawamata et al., Phys. Chem. Chem. Phys. 10, 4378 (2008)], the effects of the antisymmetric-stretching excitation of methane on the Cl((2)P(3/2))+CH(4) reaction are examined here over a wide range of initial collision energy in a crossed molecular beam imaging experiment. The antisymmetric stretch of CH(4) is prepared in a single rovibrational state of (v(3)=1, j=2) by direct infrared absorption, and the major product states of CH(3)(v=0) are probed by a time-sliced velocity-map imaging method. We find that at fixed collision energies, the stretching excitation promotes reaction rate. Compared to the ground-state reaction, this vibrational enhancement factor is, however, no more effective than the translational enhancement. The correlated HCl(v'=1) vibrational branching fraction shows a striking dependence on collision energies, varying from 0.7 at E(c)=2 kcal mol(-1) to about 0.2 at 13 kcal mol(-1). This behavior resembles the previously studied Cl+CH(2)D(2)(v(6)=1), but is in sharp contrast to the Cl+CHD(3)(v(1)=1) and CH(2)D(2)(v(1)=1) reactions. Dependences of experimental results on the probed rotational states of CH(3)(v=0) are also elucidated. We qualitatively interpret those experimental observations based on a conceptual framework proposed recently.  相似文献   

18.
We describe a series of molecular dynamics computations that reveal an intimate connection at the atomic scale between difference stress (which resists stretches) and pressure (which resists volume changes) in an idealized elastomer, in contrast to the classical theory of rubber elasticity. Our simulations idealize the elastomer as a "pearl necklace," in which the covalent bonds are stiff linear springs, while nonbonded atoms interact through a Lennard-Jones potential with energy epsilon(LJ) and radius sigma(LJ). We calculate the difference stress t(11)-(t(22)+t(33))/2 and mean stress (t(11)+t(22)+t(33))/3 induced by a constant volume extension in the x(1) direction, as a function of temperature T and reduced density rho(*)=Nsigma(IJ) (3)/nu. Here, N is the number of atoms in the simulation cell and nu is the cell volume. Results show that for rho(*)<1, the difference stress is purely entropic and is in good agreement with the classical affine network model of rubber elasticity, which neglects nonbonded interactions. However, data presented by van Krevelen [Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), p. 79] indicate that rubber at standard conditions corresponds to rho(*)=1.2. For rho(*)>1, the system is entropic for kT/epsilon(LJ)>2, but at lower temperatures the difference stress contains an additional energy component, which increases as rho(*) increases and temperature decreases. Finally, the model exhibits a glass transition for rho(*)=1.2 and kT/epsilon(LJ) approximately 2. The atomic-scale processes responsible for generating stress are explored in detail. Simulations demonstrate that the repulsive portion of the Lennard-Jones potential provides a contribution sigma(nbr)>0 to the difference stress, the attractive portion provides sigma(nba) approximately 0, while the covalent bonds provide sigma(b)<0. In contrast, their respective contributions to the mean stress satisfy Pi(nbr)<0, Pi(nba)>0, and Pi(b)<0. Analytical calculations, together with simulations, demonstrate that mean and difference stresses are related by sigma(nbr)=-APi(nbr)P(2)(theta(b)), sigma(b)=BPi(b)P(2)(theta(b)), where P(2)(theta(b)) is a measure of the anisotropy of the orientation of the covalent bonds, and A and B are coefficients that depend weakly on rho(*) and temperature. For high values of rho(*), we find that [sigma(nbr)]>[sigma(b)], and in this regime our model predicts behavior that is in good agreement with experimental data of D.L. Quested et al. [J. Appl. Phys. 52, 5977 (1981)] for the influence of pressure on the difference stress induced by stretching solithane.  相似文献   

19.
Following a bottom-up approach to nanomaterials, we present a rational synthetic route from hexacyanometalates [M(CN)(6)](3-) (M=Cr(III), Co(III)) cores to well-defined heptanuclear complexes. By changing the nature of the metallic cations and using a localised orbital model it is possible to control and to tune the ground state spin value. Thus, with M=Cr(III), d(3), S=3/2, three heptanuclear species were built and characterised by mass spectrometry in solution, by single-crystal X-ray diffraction and by powder magnetic susceptibility measurements, [Cr(III)(CNbondM'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II), L(n)=polydentate ligand), showing spin ground states S(G)=9/2 [Cu(II)], with ferromagnetic interactions J(Cr,Cu)=+45 cm(-1), S(G)=15/2 [Ni(II)] and J(Cr,Ni)=+17.3 cm(-1), S(G)=27/2 [Mn(II)], with an antiferromagnetic interaction J(Cr,Mn)=-9 cm(-1), (interaction Hamiltonian H=-J(Cr,M) [S(Cr)Sigma(i)S(M)(i)], i=1-6). With M=Co(III), d(6), S=0, the heptanuclear analogues [Co(III)(CN-M'L(n))(6)](9+) (M'=Cu(II), Ni(II), Mn(II)) were similarly synthesised and studied. They present a singlet ground state and allow us to evaluate the weak antiferromagnetic coupling constant between two next-nearest neighbours M'-Co-M'.  相似文献   

20.
Based on the corrected Hohenberg-Kohn-Sham total energy density functional [Y. A. Zhang and Y. A. Wang, J. Chem. Phys. 130, 144116 (2009)], we have developed two linear-expansion shooting techniques (LIST)- direct LIST (LISTd) and indirect LIST (LISTi), to accelerate the convergence of self-consistent field (SCF) calculations. Case studies show that overall LISTi is the most robust and efficient algorithm for accelerating SCF convergence, whereas LISTd is advantageous in the early stage of an SCF process. More importantly, LISTi outperforms Pulay's direct inversion in the iterative subspace (DIIS) [P. Pulay, J. Comput. Chem. 3, 556 (1982)] and its two recent improvements, energy-DIIS [K. N. Kudin, G. E. Scuseria, and E. Cance?s, J. Chem. Phys. 116, 8255 (2002)] and augmented Roothaan-Hall energy-DIIS [X. Hu and W. Yang, J. Chem. Phys. 132, 054109 (2010)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号