首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azobenzene and its derivatives can undergo reversible trans-cis isomerizations when irradiated with light, making them potential candidates for optically sensitive materials and devices. The adsorption and diffusion of azobenzene on the Cu(110) surface was investigated with a variable-temperature scanning tunneling microscope. The trans-isomer was observed and found to occupy two adsorption geometries-an energetically stable and a metastable state. Diffusion occurred along the closed-packed [1 -1 0] direction of the surface, and the diffusivity for the two adsorption states was found to differ by approximately 1 order of magnitude.  相似文献   

2.
We have calculated the six-dimensional (6D) potential energy surface for H2 in front of a frozen Cu(110) surface using density functional theory for 22 H2-surface configurations and the corrugation reducing procedure to interpolate between them. We carry out classical trajectory calculations on the dissociative adsorption process and find excellent agreement with measurements. We find that it is of prominent importance to account for the rovibrational state distribution in the incident H2 beam. A straightforward analysis leads to the conclusion that the motion along the surface does not play an appreciable role in the dynamics whereas the dynamical role of molecular rotation is crucial. The latter fact precludes any interpretation of dissociation in terms of a static concept such as "barrier distributions."  相似文献   

3.
The adsorption of L-histidine on clean and oxygen-covered Cu(110) surfaces has been studied by soft X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The valence band spectra, carbon, nitrogen and oxygen 1 s XPS and N K edge absorption spectra were measured for submonolayer, monolayer, and multilayer films. The spectra provide a detailed picture of the electronic structure and adsorption geometry at each coverage. In the monolayer, the histidine molecules are randomly oriented, in contrast to the submonolayer regime, where the molecules are coordinated to the copper surface with the imidazole functional group nearly parallel to, and strongly interacting with, the surface. The pi*/sigma* intensity ratio in NEXAFS spectra at the nitrogen edge varies strongly with angle, showing the imidazole ring is oriented. Adsorption models are proposed.  相似文献   

4.
Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.  相似文献   

5.
采用密度泛函理论(DFT)以及广义梯度近似方法(GGA)计算了甲酸根(HCOO)在Cu(110)、Ag(110)和Au(110)表面的吸附. 计算结果表明, 短桥位是最稳定的吸附位置, 计算的几何参数与以前的实验和计算结果吻合. 吸附热顺序为Cu(110)(-116 kJ·mol-1)>Ag(110)(-57 kJ·mol-1)>Au(110)(-27 kJ·mol-1), 与实验上甲酸根的分解温度相一致. 电子态密度分析表明, 吸附热顺序可以用吸附分子与金属d-带之间的Pauli 排斥来关联, 即排斥作用越大, 吸附越弱. 另外还从计算的吸附热数据以及实验上HCOO的分解温度估算了反应CO2+1/2H2→HCOO的活化能, 其大小顺序为Au(110)>Ag(110)>Cu(110).  相似文献   

6.
The adsorption of pyridine on a clean Ag(110) surface was characterized with ultraviolet photoemission spectroscopy, flash desorption and Auger electron spectroscopy. Pyridine condenses on the silver surface below 190 K and rapidly forms multiple layers. At temperatures above 235 K pyridine is present in submonolayer concentrations. At 275 K pyridine is chemisorbed on Ag(110).  相似文献   

7.
The adsorption and reaction of acetic acid with Pd(110) have been studied using thermal molecular beam reaction measurements and temperature-programmed desorption. Acetic acid adsorption results in the formation of acetate species which decompose to produce coincident CO(2) and H(2) desorption from the surface. C is deposited on the surface from the dehydrogenation of the methyl group. In combination, these steps are found to exhibit unusual kinetics including (i) a "surface explosion" during heating and (ii) bistability in the reaction profile for heating and cooling curves. This is the first report of such behaviour for a complex system during in situ reaction.  相似文献   

8.
Studies of the modes of adsorption and the associated changes in electronic structures of renewable organic compounds are needed in order to understand the fundamentals behind surface reactions of catalysts for future energies. Using planewave density functional theory (DFT) calculations, the adsorption of ethanol on perfect and O-defected TiO(2) rutile (110) surfaces was examined. On both surfaces the dissociative adsorption mode on five-fold coordinated Ti cations (Ti(4+)(5c)) was found to be more favourable than the molecular adsorption mode. On the stoichiometric surface E(ads) was found to be equal to 0.85 eV for the ethoxide mode and equal to 0.76 eV for the molecular mode. These energies slightly increased when adsorption occurred on the Ti(4+)(5c) closest to the O-defected site. However, both considerably increased when adsorption occurred at the removed bridging surface O; interacting with Ti(3+) cations. In this case the dissociative adsorption becomes strongly favoured (E(ads) = 1.28 eV for molecular adsorption and 2.27 eV for dissociative adsorption). Geometry and electronic structures of adsorbed ethanol were analysed in detail on the stoichiometric surface. Ethanol does not undergo major changes in its structure upon adsorption with its C-O bond rotating nearly freely on the surface. Bonding to surface Ti atoms is a σ type transfer from the O2p of the ethanol-ethoxide species. Both ethanol and ethoxide present potential hole traps on O lone pairs. Charge density and work function analyses also suggest charge transfer from the adsorbate to the surface, in which the dissociative adsorptions show a larger charge transfer than the molecular adsorption mode.  相似文献   

9.
The electronic influence of the matrix on several adsorption sites of the CO/Ni? Cu(110) system has been studied using a semiempirical molecular orbital calculation. A negative ligand effect of a copper matrix on monometallic nickel sites and a less important ligand effect of a nickel matrix on copper sites have been found and explained in base on the electronic structure. Bridge nickel–copper sites show an intermediate negative ligand effect within a Cu matrix. The results of the theoretical calculation are compared with the available experimental data.  相似文献   

10.
Controlling the molecular growth of organic semiconductors is an important issue to optimize the performance of organic devices. Conjugated molecules, used as building blocks, have an anisotropic shape and also anisotropic physical properties like charge transport or luminescence. The main challenge is to grow highly crystalline layers with molecules of defined orientation. The higher the crystallinity, the closer these properties reach their full intrinsic potential, while the orientation determines the physical properties of the film. Herein we show that the molecular orientation and growth can be steered by the surface chemistry, which tunes the molecule-substrate interaction. In addition, the oxygen reconstruction of the surface, demonstrates the flexibility of the organic molecules to adopt a given surface corrugation and their unique possibility to release stress by tilting.  相似文献   

11.
By carefully comparing the calculated and measured work function data, energetics, and vibrational spectroscopy, we determine explicitly the water structure in c(2 x 2) periodicity on Cu(110) to be an intact water overlayer with a majority component of H-down bilayer (95%) in low temperature experiments. Water dissociation is accessible by heating or ultraviolet illumination, resulting in a sensitive change in electron density at the surface and could therefore be monitored by work function measurement.  相似文献   

12.
《Chemical physics letters》1986,130(3):160-163
Electron-energy loss (EELS) spectra and thermal desorption (TDS) traces of carbon monoxide bound to the (100) surface of aluminum are presented. CO chemisorption on clean Al(100) is characterized by vibrational bands at 440 and 2060 cm−1 and by desorption at 125 K. Oxide “islands”, formed by oxidation in O2 at 575 K, have no observed electronic influence on open metallic areas of the adsorbent but merely block CO adsorption sites.  相似文献   

13.
The adsorption of benzotriazole--an outstanding corrosion inhibitor for copper--on Cu(111), Cu(100), Cu(110), and low coordinated defects thereon has been studied and characterized using density functional theory (DFT) calculations. We find that benzotriazole can either chemisorb in an upright geometry or physisorb with the molecular plane being nearly parallel to the surface. While the magnitude of chemisorption energy increases as passing from densely packed Cu(111) to more open surfaces and low coordinated defects, the physisorption energy is instead rather similar on all three low Miller index surfaces. It is pointed out that due to a large dipole moment of benzotriazole the dipole-dipole interactions are rather important. For perpendicular chemisorption modes the lateral repulsion is very long ranged, extending up to the nearest-neighbor distance of about 60 bohrs, whereas for parallel adsorption modes the lateral interactions are far less pronounced and the molecules experience a weak attraction at distances ?25 bohrs. The chemisorption energies were therefore extrapolated to zero coverage by a recently developed scheme and the resulting values are -0.60, -0.73, and -0.92 eV for Cu(111), Cu(100), and Cu(110), respectively, whereas the zero-coverage physisorption energy is about -0.7 eV irrespective of the surface plane. While the more densely packed surfaces are not reactive enough to interact with the molecular π-system, the reactivity of Cu(110) appears to be at the onset of such interaction, resulting in a very stable parallel adsorption structure with an adsorption energy of -1.3 eV that is ascribed as an apparent chemisorption+physisorption mode.  相似文献   

14.
Synchrotron-based high-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of gold with titania and the chemistry of SO(2) on Au/TiO(2)(110) surfaces. The deposition of Au nanoparticles on TiO(2)(110) produces a system with an extraordinary ability to adsorb and dissociate SO(2). In this respect, Au/TiO(2) is much more chemically active than metallic gold or stoichiometric titania. On Au(111) and rough polycrystalline surfaces of gold, SO(2) bonds weakly and desorbs intact at temperatures below 200 K. For the adsorption of SO(2) on TiO(2)(110) at 300 K, SO(4) is the only product (SO(2) + O(oxide) --> SO(4,ads)). In contrast, Au/TiO(2)(110) surfaces (theta;(Au) < or = 0.5 ML) fully dissociate the SO(2) molecule under identical reaction conditions. Interactions with titania electronically perturb gold, making it more chemically active. Furthermore, our experimental and theoretical results show quite clearly that not only gold is perturbed when gold and titania interact. The adsorbed gold, on its part, enhances the reactivity of titania by facilitating the migration of O vacancies from the bulk to the surface of the oxide. In general, the complex coupling of these phenomena must be taken into consideration when trying to explain the unusual chemical and catalytic activity of Au/TiO(2). In many situations, the oxide support can be much more than a simple spectator.  相似文献   

15.
The state of adsorption layers and adsorption kinetics of C2H4/Ir (110) at 300–1000 K has been studied using XPS method.
C2H4/Ir (110) 300–1000 K.
  相似文献   

16.
Halogenation at a semiconductor surface follows simple dynamics characterized by "localized reaction" along the direction of the halide bond being broken. Here we extend the study of halide reaction dynamics to the important environment of a smooth metal surface, where greater product mobility would be expected. Extensive examination of the physisorbed reagent and chemisorbed products from two successive electron-induced reactions showed, surprisingly, that for this system product localization and directionality described the dynamics at a metal. The reagent was p-diiodobenzene on Cu(110) at 4.6 K. The first C-I bond-breaking yielded chemisorbed iodophenyl and I-atom(#1), and the second yielded phenylene and I-atom(#2). The observed collinear reaction resulted in secondary encounters among products, which revealed the existence of a surface-aligned reaction. The molecular dynamics were well explained by a model embodying a transition between an a priori ground state and a semiempirical ionic state, which can be generally applied to electron-induced chemical reactions at surfaces.  相似文献   

17.
The electronic structure of tetracene on Cu (110) surface has been studied by using ultraviolet photoemission spectroscopy (UPS). The emission features from the organic molecule are located from 1 to 10 eV below the Fermi level, and they shift in binding energy with increasing the coverage of the organic material. For the surface with multilayer of tetracene, six well-resolved features were found at 1.90, 3.40, 4.70, 5.95, 6.95, and 9.15 eV below the Fermi level, respectively. On the surface with a lower coverage of tetracene, angle-resolved UPS measurements suggest that the molecular plane is parallel to the substrate. Density functional theory calculation confirms the flat-lying adsorption mode and shows that the tetracene molecule prefers to be adsorbed on the long bridge site with its long axis in the [110] azimuth.  相似文献   

18.
We investigate the dynamical features of the adsorption of diphenylalanine molecules on the Cu(110) surface and of their assembling into supramolecular structures by a combination of quantum and classical atomistic modeling with dynamic scanning tunneling microscopy and spectroscopic experiments. Our results reveal a self-assembling mechanism in which isolated adsorbed molecules change their conformation and adsorption mode as a consequence of their mutual interactions. In particular, the formation of zwitterions after proton transfer between initially neutral molecules is found to be the key event of the assembling process, which stabilizes the supramolecular structures. Because of the constraints on the intermolecular bonds exerted by the surface-molecule interactions, the assembly process is strictly stereoselective, and may suggest a general model for patterning and functionalization of bare metal surfaces with short chiral peptides.  相似文献   

19.
Temperature programmed desorption methods have been used to probe the enantioselectivity of achiral Cu(100), Cu(110), and Cu(111) single crystal surfaces modified by chiral organic molecules including amino acids, alcohols, alkoxides, and amino-alcohols. The following combinations of chiral probes and chiral modifiers on Cu surfaces were included in this study: propylene oxide (PO) on L-alanine modified Cu(110), PO on L-alaninol modified Cu(111), PO on 2-butanol modified Cu(111), PO on 2-butoxide modified Cu(100), PO on 2-butoxide modified Cu(111), R-3-methylcyclohexanone (R-3-MCHO) on 2-butoxide modified Cu(100), and R-3-MCHO on 2-butoxide modified Cu(111). In contrast with the fact that these and other chiral probe/modifier systems have exhibited enantioselectivity on Pd(111) and Pt(111) surfaces, none of these probe/modifier/Cu systems exhibit enantioselectivity at either low or high modifier coverages. The nature of the underlying substrate plays a significant role in the mechanism of hydrogen-bonding interactions and could be critical to observing enantioselectivity. While hydrogen-bonding interactions between modifier and probe molecule are believed to induce enantioselectivity on Pd surfaces (Gao, F.; Wang, Y.; Burkholder, L.; Tysoe, W. T. J. Am. Chem. Soc. 2007, 129, 15240-15249), such critical interactions may be missing on Cu surfaces where hydrogen-bonding interactions are believed to occur between adjacent modifier molecules, enabling them to form clusters or islands.  相似文献   

20.
Cytosine was adsorbed onto a Cu(110) surface under UHV conditions. Annealing to 370 K resulted in the formation of a (6 x 6)gg low energy electron diffraction (LEED) pattern, even at submonolayer coverages. Examination of this structure with scanning tunneling microscopy (STM) revealed islands of zigzag chains at low coverages and large ordered domains at monolayer saturation. Further annealing to 480 K initiated a phase transition to a (6 x 2)gg structure observed both by LEED and STM. High resolution electron energy loss spectroscopy spectra for both overlayer structures exhibited mainly in-plane modes suggesting upright/tilted species on the surface. Based on the experimental data and supported by density functional theory calculations, a model is proposed for the (6 x 2)gg structure, which involves the formation of deprotonated hydrogen bridge-bonded cytosine dimers, adsorbed through the oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号