首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient absorption measurements monitor the geminate recombination kinetics of solvated electrons following two-photon ionization of liquid water at several excitation energies in the range from 8.3 to 12.4 eV. Modeling the kinetics of the electron reveals its average ejection length from the hydronium ion and hydroxyl radical counterparts and thus provides insight into the ionization mechanism. The electron ejection length increases monotonically from roughly 0.9 nm at 8.3 eV to nearly 4 nm at 12.4 eV, with the increase taking place most rapidly above 9.5 eV. We connect our results with recent advances in the understanding of the electronic structure of liquid water and discuss the nature of the ionization mechanism as a function of excitation energy. The isotope dependence of the electron ejection length provides additional information about the ionization mechanism. The electron ejection length has a similar energy dependence for two-photon ionization of liquid D(2)O, but is consistently shorter than in H(2)O by about 0.3 nm across the wide range of excitation energies studied.  相似文献   

2.
Time-resolved liquid jet photoelectron spectroscopy was used to explore the excited state dynamics at the liquid water surface in the presence of alkali cations. The data were evaluated with the help of ab initio calculations on alkali-water clusters and an extension of these results on the basis of the dielectric continuum model: 160 nm, sub-20 fs vacuum ultraviolet pulses excite water molecules in the solvent shell of Na(+) or K(+) cations and evolve into a transient hydrated complex of alkali-ion and electron. The vertical ionization energy of this transient is about 2.5 eV, significantly smaller than that of the solvated electron.  相似文献   

3.
The dynamics of photodissociation of acetoxime at 193 nm, leading to the formation of (CH3)2C=N and OH fragments, has been investigated. The nascent OH radicals, which are both rotationally and vibrationally excited, were probed by laser photolysis-laser induced fluorescence technique. OH fragments in both v" = 1 and v" = 0 vibrational states were detected with a ratio of population in the higher to lower level of 0.07+/-0.01. The rotational temperatures of v" = 0 and 1 levels of OH radicals are 2650+/-150 K and 1290+/-20 K, respectively. More than 30% of the available energy, i.e., 115+/-21 kJ mol(-1) is partitioned into the relative translational energy of the fragments. The results of excited electronic state and transition state calculations at the configuration interaction with single electronic excitation level suggest that the dissociation takes place with an exit barrier of approximately 126 kJ mol(-1) at the triplet state (T2) potential energy surface, formed by internal conversions/intersystem crossing from the initially populated S2 state. Using the calculated transition state geometry and its energy, the observed energy distribution pattern can be reproduced by the hybrid model within experimental uncertainties. The presence of an exit barrier is further supported by the observation of N-OH dissociation upon 248 nm excitation, where the relative translational energy of the fragments is found to be approximately 96 kJ mol(-1). The photodissociation dynamics of acetoxime is compared with C-OH dissociation in enols and carboxylic acid and N-OH dissociation in nitrous acid. The observed emission (lambda(max)=430 nm) and the N-OH dissociation dynamics indicate crossing of the initially populated state to an emissive state of acetoxime, which is different from the dissociative state.  相似文献   

4.
The photodesorption of H(2)O in its vibrational ground state, and of OH radicals in their ground and first excited vibrational states, following 157 nm photoexcitation of amorphous solid water has been studied using molecular dynamics simulations and detected experimentally by resonance-enhanced multiphoton ionization techniques. There is good agreement between the simulated and measured energy distributions. In addition, signals of H(+) and OH(+) were detected in the experiments. These are inferred to originate from vibrationally excited H(2)O molecules that are ejected from the surface by two distinct mechanisms: a direct desorption mechanism and desorption induced by secondary recombination of photoproducts at the ice surface. This is the first reported experimental evidence of photodesorption of vibrationally excited H(2)O molecules from water ice.  相似文献   

5.
Theoretical electronic structure calculations are reported for the dissociation of water adsorbed on a 31-atom silver cluster, Ag31, and subsequent transfer of a H to a second Ag31 cluster leaving OH on the first cluster. Both ground and excited electronic state processes are considered for two choices of Ag cluster separation, 6.35 and 7.94 A, on the basis of preliminary calculations for a range of separation distances. The excited electronic state of interest is formed by photoemission of an electron from one Ag cluster and transient attachment of the photoemitted electron to the adsorbed water molecule. A very large energy barrier is found for the ground-state process (3.53 eV at a cluster separation of 6.35 A), while the barrier in the excited state is small (0.38 eV at a cluster separation of 6.35 A). In the excited state, partial occupancy of an OH antibonding orbital facilitates OH stretch and concomitant movement of the negatively charged OH toward the electron-hole in the metal cluster. The excited-state pathway for dissociation of water and transfer of H begins with the formation of an excited electronic state at 3.59-3.82 eV. Stretch of the OH bond occurs with little change in energy (0.38-0.54 eV up to a stretch of 1.96 A). In this region of OH stretch the molecule must return to the ground-state potential energy surface to fully dissociate and to transfer H to the other Ag cluster. Geometry optimizations are carried out using a simplex algorithm and a semigrid method. These methods allow the total energy to be calculated directly using configuration interaction theory.  相似文献   

6.
《Chemical physics letters》1987,134(5):480-484
The nature of geminate ion pairs in liquid cyclohexane produced in the course of the relaxation from the highly excited state attained by the simultaneous two-photon excitation (9.32 eV) with picosecond 266 nm laser light to the fluorescent state has been investigated by measuring the transient absorbance due to the fluorescent state in the presence of electron scavengers. It has been demonstrated that the distribution of the geminate electron produced by the present method can be reproduced by a δ-function with its maximum at ≈ 30–40 Å.  相似文献   

7.
Photodissociation and photoionization of 2,5-dihydroxybenzoic acid (25DHBA), at 193 and 355 nm were investigated separately in a molecular beam using multimass ion imaging techniques. Two channels competed after excitation by one 193 nm photon. One channel is dissociation from the repulsive excited state along O-H bond distance, resulting in H atom elimination from meta-OH functional group. The other channel is internal conversion to the ground state, followed by H(2)O elimination. Some of the fragments further proceeded to secondary dissociation. On the other hand, absorption of one 355 nm photon gave rise to H(2)O elimination channel on the ground state. Absorption of more than one 355 nm photon resulted in the three-body dissociation which also occurs on the ground state. Dissociation on the excited state does not play a role at 355 nm. The large concentration ratio (2×10(5)), between neutral fragments and cations produced from 355 nm multiphoton excitation indicates that internal conversion followed by dissociation, is the major channel for 355 nm multiphoton excitation. Multiphoton ionization is a minor channel. Multiphoton ionization of 25DHBA clusters only produces 25DHBA cations. Neither anion nor protonated 25DHBA cation were observed. It is very different from the ions produced from solid matrix-assisted laser desorption/ionization (MALDI), experiments. This suggests that protonated 25DHBA and negatively charged 25DHBA generated in MALDI experiments does not simply result from the ionization following proton transfer reactions or charge transfer reactions of the clusters in the gas phase.  相似文献   

8.
The photodissociation dynamics of acetaldehyde in the radical channel CH3+HCO has been reinvestigated using time-sliced velocity map imaging technique in the photolysis wavelength range of 275-321 nm. The CH3 fragments have been probed via (2+1) resonance-enhanced multiphoton ionization. Images are measured for CH3 formed in the ground and excited states (v2=0 and 1) of the umbrella vibrational mode. For acetaldehyde dissociation on T1 state after intersystem crossing from S1 state, the products are formed with high translational energy release and low internal excitation. The rotational and vibrational energy of both fragments increases with increasing photodissociation energy. The triplet barrier height is estimated at 3.8814-0.006 eV above the ground state of acetaldehyde.  相似文献   

9.
Although they represent the simplest possible charge-transfer reactions, the charge-transfer-to-solvent (CTTS) dynamics of atomic anions exhibit considerable complexity. For example, the CTTS dynamics of iodide in water are very different from those of sodide (Na-) in tetrahydrofuran (THF), leading to the question of the relative importance of the solvent and solute electronic structures in controlling charge-transfer dynamics. In this work, we address this issue by investigating the CTTS spectroscopy and dynamics of I- in THF, allowing us to make detailed comparisons to the previously studied I-/H2O and Na-/THF CTTS systems. Since THF is weakly polar, ion pairing with the counterion can have a substantial impact on the CTTS spectroscopy and dynamics of I- in this solvent. In this study, we have isolated "counterion-free" I- in THF by complexing the Na+ counterion with 18-crown-6 ether. Ultrafast pump-probe experiments reveal that THF-solvated electrons (e-THF) appear 380 +/- 60 fs following the CTTS excitation of "free" I- in THF. The absorption kinetics are identical at all probe wavelengths, indicating that the ejected electrons appear with no significant dynamic solvation but rather with their equilibrium absorption spectrum. After their initial appearance, ejected electrons do not exhibit any additional dynamics on time scales up to approximately 1 ns, indicating that geminate recombination of e-THF with its iodine atom partner does not occur. Competitive electron scavenging measurements demonstrate that the CTTS excited state of I- in THF is quite large and has contact with scavengers that are several nanometers away from the iodide ion. The ejection time and lack of electron solvation observed for I- in THF are similar to what is observed following CTTS excitation of Na- in THF. However, the relatively slow ejection time, the complete lack of dynamic solvation, and the large ejection distance/lack of recombination dynamics are in marked contrast to the CTTS dynamics observed for I- in water, in which fast electron ejection, substantial solvation, and appreciable recombination have been observed. These differences in dynamical behavior can be understood in terms of the presence of preexisting, electropositive cavities in liquid THF that are a natural part of its liquid structure; these cavities provide a mechanism for excited electrons to relocate to places in the liquid that can be nanometers away, explaining the large ejection distance and lack of recombination following the CTTS excitation of I- in THF. We argue that the lack of dynamic solvation observed following CTTS excitation of both I- and Na- in THF is a direct consequence of the fact that little additional relaxation is required once an excited electron nonadiabatically relaxes into one of the preexisting cavities. In contrast, liquid water contains no such cavities, and CTTS excitation of I- in water leads to local electron ejection that involves substantial solvent reorganization.  相似文献   

10.
In this work, we investigate the primary photodynamics of aqueous formamide. The formamide was photolyzed using 200 nm femtosecond pulses, and formation of products and their relaxation was followed with approximately 300 fs time resolution using probe pulses covering the range from 193 to 700 nm. Following excitation, the majority of formamide molecules (approximately 80%) converts the electronic excitation energy to vibrational excitation, which effectively is dissipated to the solvent through vibrational relaxation in just a few picoseconds. The vibrational relaxation is observed as a distinct modulation of the electronic absorption spectrum of formamide. The relaxation process is modeled by a simple one-dimensional wavepacket calculation. A smaller fraction of the excited formamide molecules dissociates to the CHO and NH2 radical pairs, of which 50% escape recombination. In addition to the electronic excitation of formamide, we also observe a small contribution from one-photon ionization of formamide and two-photon ionization and dissociation of the water solvent.  相似文献   

11.
Independent pairs (IP) and Monte Carlo (MC) simulations are employed to model experimental femtosecond time-resolved pump-probe spectroscopic data on the geminate recombination dynamics of solvated electrons in liquid-to-supercritical water. The hydrated electron was created by two-photon ionization of the neat fluid with a total ionization energy of 9.3 eV. In both numerical approaches, the ejection length, , (i.e. the distance from the ionization core, at which the electron is thermally and spatially localized) is used as the primary adjustable fitting parameter that can bring both model simulations into quantitative agreement with the ultrafast kinetic experiment. The influence of the thermodynamic conditions on the ejection length and on the recombination mechanism is discussed. Whereas in the compressed liquid associated with a high dielectric constant (ε ≥ 20), the electron recombines predominantly with the OH radical, the dissociative recombination via charge neutralization with the hydronium cation takes over at small dielectric constants (ε < 20). The importance of charge-dipole interactions for Monte-Carlo simulations of the recombination reactions of the hydrated electrons in the low-permittivity region is stressed.  相似文献   

12.
The energy dissipation mechanism from photoexcited azobenzene (Az) was studied by femtosecond time-resolved UV absorption spectroscopy using 7-amino-4-trifluoromethylcoumarin (ATC) as a probe. The distance between the probe molecule and Az was fixed by covalently linking them together through a rigid proline spacer. Picosecond dynamics in THF solutions were studied upon excitation into the S1 state by a 100 fs laser pulse at 480 nm. Transient absorption spectra obtained for Az-Pro-ATC combined the S1 state absorption and vibrationally excited ground-state absorption of ATC. Correction of the transient spectrum of Az-Pro-ATC for the S1 absorption provided the time-resolved absorption spectrum of the ATC hot band. Three major components were observed in the transient kinetics of Az-Pro-ATC vibrational cooling. It is proposed that in ca. 0.25 ps after the excitation, the S1 state of azobenzene decays to form an initial vibrationally excited nonthermalized ground state of Az-Pro-ATC that involves vibrational modes of both azobenzene and coumarin. This hot ground state decays in ca. 0.32 ps to the next, vibrationally equilibrated, transient state by redistributing the energy within the molecule. Subsequently, the latter state cools by transferring its energy to the closest solvent molecules in ca. 5 ps; then, the energy diffuses to the bulk solvent in 13 ps.  相似文献   

13.
Ion imaging methods have been used to explore the photodissociation dynamics of state-selected H(2)S(+) and D(2)S(+) cations. Predissociation following one photon excitation to the A (2)A(1) state at wavelengths (385< or =lambda(phot)< or =420 nm) in the vicinity of the first dissociation threshold results in formation of ground state S(+) fragment ions; the partner H(2)(D(2)) fragments are deduced to be rotationally "cold." Two photon dissociation processes are also observed, resonance enhanced at the energy of one absorbed photon by the predissociating A state levels. Two photon excitation at these wavelengths is deduced to populate an excited state of (2)A(1) symmetry, which dissociates to electronically excited S(+)((2)D) products, together with vibrationally excited H(2)(D(2)) cofragments. Ground state SH(+)(SD(+)) fragments, attributable to a one photon dissociation process, are observed once lambda(phot)< or =325 nm. Two photon induced production of SH(+)(SD(+)) fragments is also observed, at all wavelengths studied (i.e., at all lambda(phot)< or =420 nm). These SH(+)(SD(+)) fragments are deduced to be formed in their singlet (i.e., a (1)Delta and b (1)Sigma(+)) excited states, with high levels of rotational excitation. The observed product branching and energy disposals are discussed within the context of the (limited) available knowledge relating to the excited electronic states of the H(2)S(+) cation.  相似文献   

14.
Absolute emission cross sections and threshold energies have been measured for radiation (1850–9000Å) from excited fragments (OH, O and H) produced by electron impact (0–1000 eV) on water vapour. The results are compared with previous experiments and the discrepancies are discussed. The measurements indicate that hydroxyl radicals excited in the A2+ state originate from excitation of both singlet and triplet states of the water molecule. Excited atomic fragments arise partly from predissociation of Rydberg states of the water molecule converging to the third ionization potential.  相似文献   

15.
16.
The photodetachment of aqueous hydroxide (OH(?)(aq) and OD(?)(aq)) is studied using femtosecond pump?probe and pump?repump?probe spectroscopy. The electron is detached after excitation of the hydroxide ion to a charge-transfer-to-solvent (CTTS) state at 202 nm. An early intermediate is observed that builds up within 160 fs and is assigned to nonequilibrated OH?electron pairs. The subsequent dynamics are governed by thermalization, partial recombination, and dissociation of the pairs, yielding the final hydrated electrons and hydroxyl radicals. An additional pulse at 810 nm is used for secondary excitation of the intermediate species so that more insight is gained into the recombination process(es). Using this technique we observe a novel geminate recombination channel of OH with adjacent hydrated electrons. This channel leads to ultrafast quenching (700 fs) of almost half the initial number of radicals. The fast mechanism displays an isotope effect of 1.4 (for OD(?)(aq) quantum yield 35%, time constant 1.0 ps). This process was not observed in similar experiments on aqueous bromide and seems to be related to the special properties of the hydroxide ion and its local H-bonding environment. Our findings underline the high reactivity of the prehydrated electron.  相似文献   

17.
The dynamics of ammonia clusters excited to the à state with 160 fs laser pulses of 6.2 eV was studied by pump-probe experiments with a low probe photon energy of 3.1 eV. Protonated as well as unprotonated cluster ion signals have been observed. The time evolution of both species is characteristic of the intermediate rearrangement and fragmentation processes. The observations strongly support a previously developed kinetic model for this dynamics with the signal at long delay times>6 ps reflecting the species involved in the absorption dissociation ionization (ADI) mechanism. Strong evidence is found for the formation of an internally ‘quasi protonated’ excited state and of ammoniated NH4 radicals.  相似文献   

18.
The photolysis of allene and propyne, two isomers of C(3)H(4), has been investigated in the excitation energy range of 7-30 eV using vacuum ultraviolet synchrotron radiation. The visible fluorescence excitation spectra of the excited neutral photofragments of both isomers were recorded within the same experimental conditions. Below the first ionization potential (IP), this fluorescence was too weak to be dispersed and possibly originated from C(2)H or CH(2) radicals. Above IP, three excited photofragments have been characterized by their dispersed emission spectra: the CH radical (A (2)Delta-X (2)Pi), the C(2) radical (d (3)Pi(g)-a (3)Pi(u), "Swan's bands"), and the H atom (4-2 and 3-2 Balmer lines). A detailed analysis of the integrated emission intensities allowed us to determine several apparition thresholds for these fragments, all of them being interpreted as rapid and barrierless dissociation processes on the excited potential energy surfaces. In the low energy range explored in this work, both isomers exhibit different intensity distributions in their fragment emission as a function of the photolysis energy, indicating that mutual allene<-->propyne isomerization is not fully completed before dissociation occurs. The effect of isomerization on the dissociation into excited fragments is present in the whole excitation energy range albeit less important in the 7-16 eV region; it gradually increases with increasing excitation energy. Above 19 eV, the fragment distribution is very similar for the two isomers.  相似文献   

19.
Photoexcitation of 2-bromo-2-nitropropane (BNP) at 248 and 193 nm generates OH, Br, and NO(2) among other products. The OH fragment is detected by laser-induced fluorescence spectroscopy, and its translational and internal state distributions (vibration, rotation, spin-orbit, and Λ-doubling components) are probed. At both 248 and 193 nm, the OH fragment is produced translationally hot with the energy of 10.8 and 17.2 kcal∕mol, respectively. It is produced vibrationally cold (v" = 0) at 248 nm, and excited (v" = 1) at 193 nm with a vibrational temperature of 1870 ± 150 K. It is also generated with rotational excitation, rotational populations of OH(v" = 0) being characterized by a temperature of 550 ± 50 and 925 ± 100 K at 248 and 193 nm excitation of BNP, respectively. The spin-orbit components of OH(X(2)Π) are not in equilibrium on excitation at 193 nm, but the Λ-doublets are almost in equilibrium, implying no preference for its π lobe with respect to the plane of rotation. The NO(2) product is produced electronically excited, as detected by measuring UV-visible fluorescence, at 193 nm and mostly in the ground electronic state at 248 nm. The Br product is detected employing resonance-enhanced multiphoton ionization with time-of-flight mass spectrometer for better understanding of the dynamics of dissociation. The forward convolution analysis of the experimental data has provided translational energy distributions and anisotropy parameters for both Br((2)P(3∕2)) and Br?((2)P(1∕2)). The average translational energies for the Br and Br? channels are 5.0 ± 1.0 and 6.0 ± 1.5 kcal∕mol. No recoil anisotropies were observed for these products. Most plausible mechanisms of OH and Br formation are discussed based on both the experimental and the theoretical results. Results suggest that the electronically excited BNP molecules at 248 and 234 nm relax to the ground state, and subsequently dissociate to produce OH and Br through different channels. The mechanism of OH formation from BNP on excitation at 193 nm is also discussed.  相似文献   

20.
We report the first experimental and theoretical study of gas phase excited electronic state decomposition of a furazan based, high nitrogen content energetic material, 3,3'-diamino-4,4'-azoxyfurazan (DAAF), and its model systems, diaminofurazan (DAF) and furazan (C2H2N2O). DAAF has received major attention as an insensitive high energy explosive; however, the mechanism and dynamics of the decomposition of this material are not clear yet. In order to understand the initial decomposition mechanism of DAAF and those of its model systems, nanosecond energy resolved and femtosecond time resolved spectroscopies and complete active space self-consistent field (CASSCF) calculations have been employed to investigate the excited electronic state decomposition of these materials. The NO molecule is observed as an initial decomposition product from DAAF and its model systems at three UV excitation wavelengths (226, 236, and 248 nm) with a pulse duration of 8 ns. Energies of the three excitation wavelengths coincide with the (0-0), (0-1), and (0-2) vibronic bands of the NO A 2Sigma+<--X 2Pi electronic transition, respectively. A unique excitation wavelength independent dissociation channel is observed for DAAF, which generates the NO product with a rotationally cold (20 K) and a vibrationally hot (1265 K) distribution. On the contrary, excitation wavelength dependent dissociation channels are observed for the model systems, which generate the NO product with both rotationally cold and hot distributions depending on the excitation wavelengths. Potential energy surface calculations at the CASSCF level of theory illustrates that two conical intersections between the excited and ground electronic states are involved in two different excitation wavelength dependent dissociation channels for the model systems. Femtosecond pump-probe experiments at 226 nm reveal that the NO molecule is still the main observed decomposition product from the materials of interest and that the formation dynamics of the NO product is faster than 180 fs. Two additional fragments are observed from furazan with mass of 40 amu (C2H2N) and 28 amu (CH2N) employing femtosecond laser ionization. This observation suggests a five-membered heterocyclic furazan ring opening mechanism with rupture of a CN and a NO bond, yielding NO as a major decomposition product. NH2 is not observed as a secondary decomposition product of DAAF and DAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号