首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution spectra of the ~B(2)A(1)-- ~X(2)A(1) transitions of CaCH(3) and SrCH(3) have been recorded in a molecular jet/laser ablation source using laser excitation spectroscopy. Transitions arising from the K = 0 and 1 sub-bands have been observed for both molecules. An analysis of the data using a (2)A(1) symmetric top Hamiltonian has determined rotational and spin-rotation constants for the ~B(2)A(1) state of each molecule. From the rotational constants, structures have been estimated for both CaCH(3) and SrCH(3). The spin-rotation constant, epsilon(bc) = (epsilon(bb) + epsilon(cc))/2, in the ~B(2)A(1) state for both molecules is in reasonable agreement with the value calculated using the pure precession approximation. For CaCH(3), the K' = 1 levels of the ~B(2)A(1) state exhibit a perturbation that interchanges the energy ordering of the spin-rotation components.  相似文献   

2.
High-resolution laser excitation spectroscopy has been used to record the A (2)E-X (2)A(1) electronic transition of SrCH(3) in a laser ablation/molecular jet source. Transitions arising from the K(')=1<--K(")=0, K(')=0<--K(")=1, and K(')=2<--K(")=1 subbands have been observed and assigned. The data were modeled with (2)E and (2)A(1) symmetric top Hamiltonian matrices in a Hund's case (a) basis, using a least squares fitting program. Rotational and fine structure parameters for the A (2)E state were determined. A comparison of the spin-orbit energy separation in the A (2)E state to other strontium containing free radicals showed that the Jahn-Teller effect is negligible. The spin-rotation constants for the A (2)E state were calculated using the pure precession model and were found to be in good agreement with the experimentally determined parameters. These calculations suggest that the A (2)E state of SrCH(3) is not entirely of p orbital character. The rotational constants were used to estimate the structural parameters of SrCH(3) in the A (2)E state. The strontium-carbon bond length was found to decrease by approximately 0.006 A, and the hydrogen-carbon-hydrogen bond angle opened by approximately 0.8 degrees compared to the X (2)A(1) state, similar to the geometry changes observed for CaCH(3).  相似文献   

3.
The vinyl radical in the ground vibronic state produced in a supersonic jet expansion by 193 nm excimer laser photolysis of vinyl bromide was investigated by millimeter-wave spectroscopy. Due to the proton tunneling, the ground state is split into two components, of which the lower and higher ones are denoted as 0+ and 0-, respectively. Eight pure rotational transitions with Ka = 0 and 1 obeying a-type selection rules were observed for each of the 0+ and 0- states in the frequency region of 60-250 GHz. Tunneling-rotation transitions connecting the lower (0+) and upper (0-) components of the tunneling doublet, obeying b-type selection rules, were also observed in the frequency region of 190-310 GHz, including three R- and six Q-branch transitions. The observed frequencies of the pure rotational and tunneling-rotation transitions were analyzed by using an effective Hamiltonian in which the coupling between the 0+ and 0- states was taken into account. A set of precise molecular constants was obtained. Among others, the proton tunneling splitting in the ground state was determined to be DeltaE0 = 16,272(2) MHz. The potential barrier height was estimated to be 1580 cm(-1) from the proton tunneling splitting, by an analysis using a detailed one-dimensional model. The spin-rotation and hyperfine interaction constants were also determined for the 0+ and 0- states together with the off-diagonal interaction constants connecting the 0+ and 0- states, epsilonab + epsilonba for the spin-rotation interaction and Tab for the hyperfine interaction of the alpha (CH) proton. The hyperfine interaction constants, due to the alpha proton and the beta (CH2) protons, are consistent with those derived from electron spin resonance studies.  相似文献   

4.
A two-state vibrational wave packet is prepared in a low-lying 4d[12](1 or 2) Rydberg state of jet cooled Br(2) (4d, v(')=3 and v(')=4) by two-photon excitation with 266.5 nm pulses from an ultrafast laser. The wave packet is detected by autoionization following excitation with time-delayed 800 nm pulses to the n=8 (v(+)=4) and n=9 (v(+)=3) Rydberg states in the (2)Pi(12) angular momentum core state. Autoionization of each state occurs to the (2)Pi(32) state of the ion through spin-orbit ionization. Photoelectron spectroscopy is used to differentiate between the n=8 and n=9 ejected photoelectrons. Detection of the wave packet recurrences via the n=8 and n=9 Rydberg states reveals a pi phase-shift difference of the recurrences between the two final states. In each case, Delta v not equal 0 transitions are observed since wave packet recurrences are detected. By fitting the observed phase change of the recurrences with a simple model for the overlap amplitudes and assumptions about the potentials, we estimate, within the context of the model, that approximately 0.6% of the transitions may be attributed to Delta v= +/- 1 transitions between the initial Rydberg superposition state and the final Rydberg detection state.  相似文献   

5.
The H(2)C=CD isotopic species of vinyl radical produced in a supersonic jet expansion by ultraviolet laser photolysis was studied by millimeter-wave spectroscopy. Due to the tunneling motion of the α deuteron, the ground state is split into two components, 0(+) and 0(-). Tunneling-rotation transitions connecting the lower (0(+)) and upper (0(-)) components of the tunneling doublet were observed in the frequency region of 184-334 GHz, including three R- and two Q-branch transitions. Three and two pure rotational transitions in the K(a)=0 and 1 stacks, respectively, were also observed for each of the 0(+) and 0(-) states in the frequency region of 52-159 GHz. Least-squares analysis of the observed frequencies for the tunneling-rotation and pure rotational transitions with well resolved hyperfine structures yielded a set of precise molecular constants, among which the tunneling splitting in the ground state was determined to be ΔE(0)=1187.234(17)?MHz, which is 1/14 that for H(2)C=CH. The potential barrier height derived from the observed tunneling splitting by an analysis of the tunneling dynamics using a one-dimensional model is 1545?cm(-1), consistent with the value 1568?cm(-1) obtained for the normal vinyl. The observed spectrum was found to be perturbed by a hyperfine interaction connecting ortho and para levels. The constant for the interaction, which we call the ortho-para mixing Fermi contact interaction, has been determined to be δa(F) ((β))=68.06(53)?MHz. This is believed to be the first definite detection of such an interaction. By this interaction the ortho and para states of H(2)C=CD are mixed up to about 0.1%. The constant is more than 1000 times larger than spin-rotation interaction constants that cause ortho-para mixing in closed shell molecules and suggests extremely rapid conversion between the ortho and para nuclear spin isomers of H(2)C=CD.  相似文献   

6.
The millimeter/submillimeter-wave spectrum of the CoCl radical (X (3)Phi(i)) has been recorded using direct absorption techniques in the frequency range 340-510 GHz. This work is the first pure rotational study of this molecule. The radical was created by the reaction of Cl(2) with cobalt vapor. Rotational transitions arising from the Omega=4, 3, and 2 spin-orbit components of Co(35)Cl have been measured, all of which exhibit hyperfine splittings due to the (59)Co nucleus (I=7/2). Transitions arising from the Co(37)Cl species were also recorded, as well as those originating in the v=1, 2, 3, and 4 vibrational states of both isotopomers. The spin-orbit pattern exhibited by the molecule is unusual, with the Omega=3 component significantly shifted relative to the other spin components. In addition, the regular octet hyperfine splittings become distorted above a certain J value for the Omega=3 transitions only. These effects suggest that the molecule is highly perturbed in its ground state, most likely a result of second-order spin-orbit mixing with a nearby isoconfigurational (1)Phi(3) state. The complete data set for Co(35)Cl and Co(37)Cl were fit successfully with a case (a) Hamiltonian but required a large negative spin-spin constant of lambda=-7196 GHz and higher order centrifugal distortion corrections to the rotational, spin-orbit, spin-spin, and hyperfine terms. The value of the spin-spin constant suggests that the Omega=3 component is shifted to higher energy and lies near the Omega=2 sublevel. The hyperfine parameters are consistent with a delta(3)pi(3) electron configuration and indicate that CoCl is more covalent than CoF.  相似文献   

7.
The nu 3(sigma u) fundamental vibration of 1 sigma g+ Si2C3 has been observed using a laser vaporization-supersonic cluster beam-diode laser spectrometer. Forty rovibrational transitions were measured in the range of 1965.8 to 1970.9 cm-1 with a rotational temperature of 10-15 K. A least-squares fit of these transitions yielded the following molecular constants: nu 3(sigma u)=1968.188 31(18) cm-1, B"=0.031 575 1(60) cm-1, and B'=0.031 437 4(57) cm-1. These results are in excellent agreement with recent Fourier transform infrared (FTIR) measurements of Si2C3 trapped in a solid Ar matrix [J. Chem. Phys. 100, 181(1994)] and with ab initio calculations [J. Chem. Phys. 100, 175 (1994)] which suggest cumulenic-like bonding for Si2C3, analogous to the isovalent C5 carbon cluster.  相似文献   

8.
9.
Rotationally resolved laser induced fluorescence and stimulated emission pumping A?(2)A(1)-X?(2)E spectra, along with pure rotational spectra in the 153-263 GHz region within the E(3/2) component of the ground state in asymmetrically deuterated methoxy radicals CH(2)DO and CHD(2)O have been observed. The combined data set allows for the direct measurement with high precision of the energy separation between the E(1/2) and E(3/2) components of the ground state and the energy separation between the parity stacks in the E(3/2) component of the ground state. The experimentally observed frequencies in both isotopologues are fit to an effective rotational Hamiltonian accounting for rotational and spin-rotational effects arising in a near-prolate asymmetric top molecule with dynamic Jahn-Teller distortion. Isotopic dependencies for the molecular parameters have been successfully implemented to aid the analysis of these very complex spectra. The analysis of the first and second order contributions to the effective values of molecular parameters has been extended to elucidate the physical significance of resulting molecular parameters. Comparisons of measured parameters, e.g., spin-orbit coupling, rotational and spin-rotation constants, are made among the 5 methoxy isotopologues for which data is now available. Comparisons of experimental results, including the derived geometric structure at both the C(3v) conical intersection and at the Jahn-Teller distorted minima, are made with quantum chemistry calculations.  相似文献   

10.
A state-selected beam of hydroxyl radicals is generated using a pulsed discharge source and hexapole field. The OH radicals are characterized by resonance-enhanced multiphoton ionization (REMPI) spectroscopy via the nested D 2Sigma- and 3 2Sigma- Rydberg states. Simplified spectra are observed from the selected |MJ|=3/2 component of the upper Lambda-doublet level of the lowest rotational state (J=32) in ground (v"=0) and excited (v"=1-3) vibrational levels of the OH X 2Pi3/2 state. Two-photon transitions are observed to the D 2Sigma-(v'=0-3) and 3 2Sigma-(v'=0,1) vibronic levels, extending previous studies to higher vibrational levels of the Rydberg states. Spectroscopic constants are derived for the Rydberg states and compared with prior experimental studies. Complementary first-principle theoretical studies of the properties of the D 2Sigma- and 3 2Sigma- Rydberg states [see M. P. J. van der Loo and G. C. Groenenboom, J. Chem. Phys. 123, 074310 (2005), following paper] are used to interpret the experimental findings and examine the utility of the (2+1) REMPI scheme for sensitive detection of OH radicals.  相似文献   

11.
The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X?(+) (2)E(3/2)←X?(1)A(1) transition of CH(3)I and CD(3)I have been recorded. The spectral resolution of better than 0.15 cm(-1) enabled the observation of the rotational structure. CH(3)I(+) and CD(3)I(+) are subject to a weak E?e Jahn-Teller effect and strong spin-orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, C(3v)(2)(M), including the effects of the spin-orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin-orbit and linear Jahn-Teller coupling parameters of the X?(+) ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [E(I)(CH(3)I)/hc=76931.35(20) cm(-1) and E(I)(CD(3)I)/hc=76957.40(20) cm(-1)] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of CH(3)I and CD(3)I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)].  相似文献   

12.
The pure rotational spectrum of the MnCl radical (X (7)Sigma(+)) has been recorded in the range 141-535 GHz using millimeter-submillimeter direct absorption spectroscopy. This work is the first time the molecule has been studied with rotational resolution in its ground electronic state. MnCl was synthesized by the reaction of manganese vapor, produced in a Broida-type oven, with Cl(2). Transitions of both chlorine isotopomers were measured, as well as lines originating in several vibrationally excited states. The presence of several spin components and manganese hyperfine interactions resulted in quite complex spectra, consisting of multiple blended features. Because 42 rotational transitions were measured for Mn(35)Cl over a wide range of frequencies with high signal-to-noise, a very accurate set of rotational, fine structure, and hyperfine constants could be determined with the aid of spectral simulations. Spectroscopic constants were also determined for Mn(37)Cl and several vibrationally excited states. The values of the spin-rotation and spin-spin parameters were found to be relatively small (gamma=11.2658 MHz and lambda=1113.10 MHz for Mn(35)Cl); in the case of lambda, excited electronic states contributing to the second-order spin-orbit interaction may be canceling each other. The Fermi contact hyperfine term was found to be large in manganese chloride with b(F)(Mn(35)Cl)=397.71 MHz, a result of the manganese 4s character mixing into the 12sigma orbital. This orbital is spsigma hybridized, and contains some Mn 4psigma character, as well. Hence, it also contributes to the dipolar constant c, which is small and positive for this radical (c=32.35 MHz for Mn(35)Cl). The hyperfine parameters in MnCl are similar to those of MnH and MnF, suggesting that the bonding in these three molecules is comparable.  相似文献   

13.
Gas phase emission and laser excitation spectra of the Ã2E?X?2E (Σ = +½, ?½) transition of rotationally/vibrationally cooled 1-chloro- and 1-bromo-1,3-pentadiyne cations have been obtained. The emission was excited by electron impact on a seeded helium supersonic free jet and the fluorescence by laser excitation of cations produced by Penning ionization and collisional relaxation. From these two sets of data the origin bands of the spin-orbit systems are located and for the bromo species this leads to better values of the spin-orbit splitttings in the two electronic states and of the first adiabatic ionization energy. The vibrational frequencies of many of the fundamentals of these cations in the X?2E and Ã2E states have been obtained to within ±2 cm?1.  相似文献   

14.
The authors have obtained rotationally resolved vacuum ultraviolet pulsed field ionization-photoelectron (vuv-PFI-PE) spectrum of HD in the photon energy range of 15.29-18.11 eV, covering the ionization transitions HD+(X 2Sigmag+,v+=0-21,N+)<--HD(X 1Sigmag+,v"=0,J"). The assignment of rotational transitions resolved in the vuv-PFI-PE vibrational bands for HD+(X 2Sigmag+,v+=0-20) and their simulation using the Buckingham-Orr-Sichel (BOS) model are presented. Rotational branches corresponding to the DeltaN=N+-J"=0, +/-1, +/-2, +/-3, and +/-4 transitions are observed in the vuv-PFI-PE spectrum of HD. The BOS simulation shows that the perturbation of vuv-PFI-PE rotational line intensities due to near resonance autoionization is very minor at v+>or=5 and decreases as v+ is increased. Thus, the rotationally resolved PFI-PE bands for HD+(v+>or=5) presented here provide reliable estimates of state-to-state cross sections for direct photoionization of HD, while the rotationally resolved PFI-PE bands for HD+(v+<5) are useful data for fundamental understanding of the near resonance autoionizing mechanism. On the basis of the rovibrational assignment of the vuv-PFI-PE bands, the ionization energies for the formation of HD+(X 2Sigmag+,v+=0-20,N+) from HD(X 1Sigmag+,v"=0,J") and the vibrational constants (omegae, omegaechie, omegaeye, and omegaeze), the rotational constants (Be and alphae), the vibrational energy spacings, and the dissociation energy for HD+(X 2Sigmag+) are determined. As expected, these values are found to be in excellent agreement with high level theoretical predictions.  相似文献   

15.
High-resolution infrared spectra of clusters containing para-H2 and/or ortho-H2 and a single nitrous oxide molecule are studied in the 2225-cm(-1) region of the upsilon1 fundamental band of N2O. The clusters are formed in pulsed supersonic jet expansions from a cooled nozzle and probed using a tunable infrared diode laser spectrometer. The simple symmetric rotor-type spectra generally show no resolved K structure, with prominent Q-branch features for ortho-H2 but not para-H2 clusters. The observed vibrational shifts and rotational constants are reported. There is no obvious indication of superfluid effects for para-H2 clusters up to N=13. Sharp transitions due to even larger clusters are observed, but no definite assignments are possible. Mixed (para-H2)N-(ortho-H2)M-N2O cluster line positions can be well predicted by linear interpolation between the corresponding transitions of the pure clusters.  相似文献   

16.
《Chemical physics》1987,113(2):271-285
The rotationally resolved laser-induced fluorescence (LIF) excitation spectrum of V system bands (V1B2≈X1Σ1g transition) of CS2 cooled in a supersonic jet has been observed. In a supersonic jet of CS2/Ar or He mixture, the rotational temperature of CS2 is reduced to less than 10 K, and thus the LIF excitation spectrum is simplified significantly. Two types of rotational structure are found; one is composed of P and R branch transitions from even J″ levels and the other is of P, Q, and R branch transitions from even as well as J″. The bands with the former rotational structure are assigned to transitions to K′ = O levels of 1B2 state, the bands with the latter structure to transitions to K′ = 1 levels from the (O, 11, O) level of the electronic ground state, i.e. vibrationally hot bands. This assignment is supported by the further evidence that these hot bands disappear when the supersonic jet includes a third-body gas such as NH3 which enhances the vibrational relaxation of CS2. Calculation of transition moments for respective leads to the conclusion that the upper levels of the V system bands are located in the region close to or higher than the potential barrier of the bending vibration of excited CS2. The radiative lifetime of CS2 in single rovibronic levels of the 1B2 state is in the range of 2–8 μs which is of the same order of magnitude as that calculated from the absorption coefficient. It tends to be longer for higher J levels or for higher vibronic levels. Zeeman quantum beating is observed in the fluorescence decay of excited CS2 for a number of rovibronic levels under a weak magnetic field, and thus a magnetic moment associated with each rovibronic level can be determined. The g values are around 0.02 and tend to be smaller in higher J levels for some vibronic states. Based on the the observed radiative lifetime and the g value, it is suggested that the 1B2 state is perturbed by a spin-rotation interaction with two spin components, A1 and B1 of the 3A2 orbital state besides a strong spin-orbit coupling with the R 3B2 state.  相似文献   

17.
HD molecules formed in v"=3 and v"=4 have been detected by laser spectroscopy when a cold (15 K) graphite surface is irradiated with H and D atoms. Population of the v"=3, J"=0-6 and v"=4, J"=0-6 levels has been detected and the average rotational temperatures of the nascent HD were determined. These results are compared with previous data collected for the formation of HD in v"=1 and 2 under similar conditions. This comparison indicates that the nascent HD flux increases with increasing vibrational quantum number for v"=1-4.  相似文献   

18.
The J = 1-0 transitions of (12)CH(+), (13)CH(+), and (12)CD(+) in the ground X(1)Σ(+) state have been unambiguously identified by using an extended negative glow discharge as an ion source. Unexpectedly large Zeeman splittings have been observed, and the (13)CH(+) line exhibits nuclear spin-rotation hyperfine splitting in addition to the Zeeman effect. The nuclear spin-rotation coupling constant was determined to be 1.087(50) MHz for the (13)C species. The rotational g-factor is found to be -7.65(29), in terms of the nuclear magneton for the J = 1 and v = 0 state, more than an order of magnitude larger than values for typical diamagnetic closed shell molecules. These larger than usual magnetic interactions for a (1)Σ molecule are caused by the large rotational energy and relatively small excitation energy of the excited A(1)Π state. The effective g-factor and the spin-rotation coupling constant obtained by ab initio calculations agree very well with the experimentally determined values.  相似文献   

19.
Tetrahydropyran (THP) undergoes photodissociation on excitation with ArF laser at 193 nm, generating OH radical as one of the transient photoproducts. Laser-induced fluorescence technique is used to detect the nascent OH radical and measure its energy state distribution. The OH radical is formed mostly in the ground vibrational level (v"=0), with low rotational excitation. The rotational distribution of OH (v"=0,J) is characterized by a temperature of 433+/-31 K, corresponding to a rotational energy of 0.86+/-0.06 kcalmol. Two Lambda-doublet levels, 2Pi+(A') and 2Pi-(A"), and the two spin-orbit states, the 2Pi(3/2) and 2Pi(1/2), of OH are populated statistically for all rotational levels. The relative translational energy associated with the photoproducts in the OH channel is calculated to be 21.9+/-3.2 kcal mol(-1), from the Doppler-broadened linewidth, giving an ft value of approximately 43%, and most of the remaining 57% of the available energy is distributed in the internal modes of the other photofragment, C5H9. The observed distribution of the available energy is explained well, using a hybrid model of energy partitioning, with an exit barrier of 40 kcal mol(-1). The potential-energy surface of the reaction channel was mapped by ab initio molecular-orbital calculations. Based on experimental and theoretical results, a mechanism for OH formation is proposed. Electronically excited THP relaxes to the ground electronic state, and from there, a sequence of reactions takes place, generating OH. The proposed mechanism first involves C-O bond scission, followed by a 1,3 H atom migration to O atom, and finally, the C-OH bond cleavage giving OH.  相似文献   

20.
The pure rotational spectrum of the ZnCCH (X?(2)Σ(+)) radical has been measured using Fourier transform microwave (FTMW) and millimeter direct-absorption methods in the frequency range of 7-260 GHz. This work is the first study of ZnCCH by any type of spectroscopic technique. In the FTMW system, the radical was synthesized in a mixture of zinc vapor and 0.05% acetylene in argon, using a discharge assisted laser ablation source. In the millimeter-wave spectrometer, the molecule was created from the reaction of zinc vapor, produced in a Broida-type oven, with pure acetylene in a dc discharge. Thirteen rotational transitions were recorded for the main species, (64)ZnCCH, and between 4 and 10 for the (66)ZnCCH, (68)ZnCCH, (64)ZnCCD, and (64)Zn(13)C(13)CH isotopologues. The fine structure doublets were observed in all the data, and in the FTMW spectra, hydrogen, deuterium, and carbon-13 hyperfine splittings were resolved. The data have been analyzed with a (2)Σ Hamiltonian, and rotational, spin-rotation, and H, D, and (13)C hyperfine parameters have been established for this radical. From the rotational constants, an r(m) ((1)) structure was determined with r(Zn-C) = 1.9083 A?, r(C-C) = 1.2313 A?, and r(C-H) = 1.0508 A?. The geometry suggests that ZnCCH is primarily a covalent species with the zinc atom singly bonded to the C≡C-H moiety. This result is consistent with the hyperfine parameters, which suggest that the unpaired electron is localized on the zinc nucleus. The spin-rotation constant indicates that an excited (2)Π state may exist ~19,000 cm(-1) in energy above the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号