首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report an experimental determination of the k(00-->02) rate coefficient for inelastic H(2):H(2) collisions in the temperature range from 2 to 110 K based on Raman spectroscopy data in supersonic expansions of para-H(2). For this purpose a more accurate method for inverting the master equation of rotational populations is presented. The procedure permits us to reduce the measured k(00-->02) rate coefficient to the corresponding sigma(00-->02) cross section in the range of precollisional energy from 360 to 600 cm(-1). Numerical calculations of sigma(00-->02) carried out in the frame of the coupled channel method are also reported for different intermolecular potentials of H(2). A good agreement is found between the experimental cross section and the numerical one derived from Diep and Johnson's potential [J. Chem. Phys. 112, 4465 (2000)].  相似文献   

2.
3.
The six-dimensional (6D) potential energy surface (PES) for the H(2) molecule interacting with a clean Ru(0001) surface has been computed accurately for the first time. Density functional theory (DFT) and a pseudopotential based periodic plane-wave approach have been used to calculate the electronic interactions between the molecule and the surface. Two different generalized gradient approximation (GGA) exchange-correlation functionals, PW91 and RPBE, have been adopted. Based on the DFT/GGA calculated potential energies, an analytical 6D PES has been constructed using the corrugation reducing procedure. A very accurate representation of the DFT/GGA data has been achieved, with an average error in the interpolation of about 3 meV and a maximum error not larger than about 30 meV. The top site is found to be the most reactive site for both functionals used, but PW91 predicts a higher reactivity than RPBE, with lower-energy and earlier-located dissociation barriers. The energetic corrugation displayed by the RPBE PES is larger than the PW91 PES while the geometric corrugation is smaller. The differences between the two PESs increase as the distance of the molecular center of mass to the surface decreases. A direct comparison with experimental investigations on H(2)/Ru(0001) could shed light on the suitability of these XC potentials often used in DFT calculations.  相似文献   

4.
A detailed analysis of the He-NH((3)Sigma(-)) van der Waals complex is presented. We discuss ab initio calculations of the potential energy surface and fitting procedures with relevance to cold collisions, and we present accurate calculations of bound energy levels of the triatomic complex as well as collisional properties of NH molecules in a buffer gas of (3)He. The influence of the external magnetic field used to trap the NH molecules and the effect of the atom-molecule interaction potential on the collisionally induced Zeeman relaxation are explored. It is shown that minute variations of the interaction potential due to different fitting procedures may alter the Zeeman relaxation rate at ultralow temperatures by as much as 50%.  相似文献   

5.
6.
A single-sheeted DMBE potential energy surface is reported for the reactions N(4S)+H2<-->NH(X3Sigma-)+H based on a fit to accurate multireference configuration interaction energies. These have been calculated using the aug-cc-pVQZ basis set of Dunning and the full valence complete active space wave function as reference, being semi-empirically corrected by scaling the two-body and three-body dynamical correlation energies. The topographical features of the novel global potential energy surface are examined in detail, including a conical intersection involving the two first 4A' potential energy surfaces which has been transformed into an avoided crossing in the present single-sheeted representation.  相似文献   

7.
Fluorescence from a single vibronic level of SO(B3Sigma-, v' 相似文献   

8.
Following our earlier work on collisions of He with the methylene radical in its excited ?(1)A(1) state [L. Ma, M. H. Alexander, and P. J. Dagdigian, J. Chem. Phys. 134, 154307 (2011)], we investigate here the analogous relaxation of CH(2) in its ground X(3)B(1) electronic state. The molecule is treated as semi-rigid, with fixed bond lengths but a varying bond angle. We use an ab initio potential energy surface (PES) which is averaged over the CH(2) bending angle weighted by the square of the bending wave function. The PES for the interaction of He with CH(2) in the X state is considerably less anisotropic than for interaction with the ? state since the two 2p electrons on the C atom are evenly distributed among the bonding and non-bonding molecular orbitals. We report quantum scattering calculations of state-to-state and total removal cross sections as well as total removal rate constants at room temperature. Because of the less pronounced anisotropy, these cross sections and rate constants are considerably smaller than for collisions of CH(2)(?) with He. Finally, we investigate the dependence of rotational inelasticity on the bending vibrational quantum number.  相似文献   

9.
The rate coefficient of the reaction NH(X (3)Sigma(-))+D((2)S)-->(k(1) )products (1) is determined in a quasistatic laser-flash photolysis, laser-induced fluorescence system at low pressures. The NH(X) radicals are produced by quenching of NH(a (1)Delta) (obtained in the photolysis of HN(3)) with Xe and the D atoms are generated in a D(2)/He microwave discharge. The NH(X) concentration profile is measured in the presence of a large excess of D atoms. The room-temperature rate coefficient is determined to be k(1)=(3.9+/-1.5) x 10(13) cm(3) mol(-1) s(-1). The rate coefficient k(1) is the sum of the two rate coefficients, k(1a) and k(1b), which correspond to the reactions NH(X (3)Sigma(-))+D((2)S)-->(k(1a) )ND(X (3)Sigma(-))+H((2)S) (1a) and NH(X (3)Sigma(-))+D((2)S)-->(k(1b) )N((4)S)+HD(X (1)Sigma(g) (+)) (1b), respectively. The first reaction proceeds via the (2)A(") ground state of NH(2) whereas the second one proceeds in the (4)A(") state. A global potential energy surface is constructed for the (2)A(") state using the internally contracted multireference configuration interaction method and the augmented correlation consistent polarized valence quadrupte zeta atomic basis. This potential energy surface is used in classical trajectory calculations to determine k(1a). Similar trajectory calculations are performed for reaction (1b) employing a previously calculated potential for the (4)A(") state. The calculated room-temperature rate coefficient is k(1)=4.1 x 10(13) cm(3) mol(-1) s(-1) with k(1a)=4.0 x 10(13) cm(3) mol(-1) s(-1) and k(1b)=9.1 x 10(11) cm(3) mol(-1) s(-1). The theoretically determined k(1) shows a very weak positive temperature dependence in the range 250< or =TK< or =1000. Despite the deep potential well, the exchange reaction on the (2)A(") ground-state potential energy surface is not statistical.  相似文献   

10.
An improved three-dimensional potential energy surface for the H(2)-Kr system is determined from a direct fit of new infrared spectroscopic data for H(2)-Kr and D(2)-Kr to a potential energy function form based on the exchange-Coulomb model for the intermolecular interaction energy. These fits require repetitive, highly accurate simulations of the observed spectra, and both the strength of the potential energy anisotropy and the accuracy of the new data make the "secular equation perturbation theory" method used in previous analyses of H(2)-(rare gas) spectra inadequate for the present work. To address this problem, an extended version of the "iterative secular equation" method was developed which implements direct Hellmann-Feynman theorem calculation of the partial derivatives of eigenvalues with respect to parameters of the Hamiltonian which are required for the fits.  相似文献   

11.
We present a six-dimensional potential energy surface for the (H(2))(2) dimer based on coupled-cluster electronic structure calculations employing large atom-centered Gaussian basis sets and a small set of midbond functions at the dimer's center of mass. The surface is intended to describe accurately the bound and quasibound states of the dimers (H(2))(2), (D(2))(2), and H(2)-D(2) that correlate with H(2) or D(2) monomers in the rovibrational levels (v,j)=(0,0), (0,2), (1,0), and (1,2). We employ a close-coupled approach to compute the energies of these bound and quasibound dimer states using our potential energy surface, and compare the computed energies for infrared and Raman transitions involving these states with experimentally measured transition energies. We use four of the experimentally measured dimer transition energies to make two empirical adjustments to the ab initio potential energy surface; the adjusted surface gives computed transition energies for 56 experimentally observed transitions that agree with experiment to within 0.036 cm(-1). For 26 of the 56 transitions, the agreement between the computed and measured transition energies is within the quoted experimental uncertainty. Finally, we use our potential energy surface to predict the energies of another 34 not-yet-observed infrared and Raman transitions for the three dimers.  相似文献   

12.
We report a laboratory measurement of the rate coefficient for the collisional removal of O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms. In the experiments, 266-nm laser light photodissociates ozone in a mixture of molecular oxygen and ozone. The photolysis step produces vibrationally excited O(2)(a(1)Delta(g)) that is rapidly converted to O(2)(X(3)Sigma(g) (-),upsilon=1-3) in a near-resonant electronic energy-transfer process with ground-state O(2). In parallel, a large amount of O((1)D) atoms is generated that promptly relaxes to O((3)P). Under the conditions of the experiments, only collisions with the photolytically produced O((3)P) atoms control the lifetime of O(2)(X(3)Sigma(g) (-),upsilon=1), because its removal by molecular oxygen at room temperature is extremely slow. Tunable 193-nm laser light monitors the temporal evolution of the O(2)(X(3)Sigma(g) (-),upsilon=1) population by detection of laser-induced fluorescence near 360 nm. The removal rate coefficient for O(2)(X(3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is (3.2+/-1.0)x10(-12) cm(3) s(-1) (2sigma) at a temperature of 315+/-15 K (2sigma). This result is essential for the analysis and correct interpretation of the 6.3-mum H(2)O(nu(2)) band emission in the Earth's mesosphere and indicates that the deactivation of O(2)(X (3)Sigma(g) (-),upsilon=1) by O((3)P) atoms is significantly faster than the nominal values recently used in atmospheric models.  相似文献   

13.
The rate coefficient of the reaction NH(X (3)Sigma(-)) + H((2)S)-->(k(1a) )N((4)S) + H(2)(X (1)Sigma(g) (+)) is determined in a quasistatic laser-flash photolysis, laser-induced fluorescence system at low pressures (2 mbar< or =p< or =10 mbar). The NH(X) radicals are produced via the quenching of NH(a(1)Delta) (obtained by photolyzing HN(3)) with Xe whereas the H atoms are generated in a H(2)He microwave discharge. The NH(X) concentration profile is measured under pseudo-first-order condition, i.e., in the presence of a large excess of H atoms. The room temperature rate coefficient is determined to be k(1a) = (1.9 +/- 0.5) x 10(12) cm(3) mol(-1) s(-1). It is found to be independent of the pressure in the range considered in the present experiment. A global potential energy surface for the (4)A(") state is calculated with the internally contracted multireference configuration interaction method and the augmented correlation consistent polarized valence quadruple zeta atomic basis. The title reaction is investigated by classical trajectory calculations on this surface. The theoretical room temperature rate coefficient is k(1a) = 0.92 x 10(12)cm(3) mol(-1) s(-1). Using the thermodynamical data for the atoms and molecules involved, the rate coefficient for the reverse reaction, k(-1a), is also calculated. At high temperatures it agrees well with the measured k(-1a).  相似文献   

14.
Global analytic potential energy surfaces for O((3)P) + H(2)O((1)A(1)) collisions, including the OH + OH hydrogen abstraction and H + OOH hydrogen elimination channels, are presented. Ab initio electronic structure calculations were performed at the CASSCF + MP2 level with an O(4s3p2d1f)/H(3s2p) one electron basis set. Approximately 10(5) geometries were used to fit the three lowest triplet adiabatic states corresponding to the triply degenerate O((3)P) + H(2)O((1)A(1)) reactants. Transition state theory rate constant and total cross section calculations using classical trajectories to collision energies up to 120?kcal mol(-1) (~11?km s(-1) collision velocity) were performed and show good agreement with experimental data. Flux-velocity contour maps are presented at selected energies for H(2)O collisional excitation, OH + OH, and H + OOH channels to further investigate the dynamics, especially the competition and distinct dynamics of the two reactive channels. There are large differences in the contributions of each of the triplet surfaces to the reactive channels, especially at higher energies. The present surfaces should support quantitative modeling of O((3)P) + H(2)O((1)A(1)) collision processes up to ~150?kcal mol(-1).  相似文献   

15.
The potential energy surface for the O((3)P) + C(2)H(4) reaction, which plays an important role in C(2)H(4)/O(2) flames and in hydrocarbon combustion in general, was theoretically reinvestigated using various quantum chemical methods, including G3, CBS-QB3, G2M(CC,MP2), and MRCI. The energy surfaces of both the lowest-lying triplet and singlet electronic states were constructed. The primary product distribution for the multiwell multichannel reaction was then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. Intersystem crossing of the "hot" CH(2)CH(2)O triplet adduct to the singlet surface, shown to account for about half of the products, was estimated to proceed at a rate of approximately 1.5 x 10(11) s(-1). In addition, the thermal rate coefficients k(O + C(2)H(4)) in the T = 200-2000 K range were computed using multistate transition state theory and fitted by a modified Arrhenius expression as k(T) = 1.69 x 10(-16) x T(1.66) x exp(-331 K/T) . Our computed rates and product distributions agree well with the available experimental results. Product yields are found to show a monotonic dependence on temperature. The major products (with predicted yields at T = 300 K/2000 K) are: CH(3) + CHO (48/37%), H + CH(2)CHO (40/19%), and CH(2)(X(3)B(1)) + H(2)CO (5/29%), whereas H + CH(3)CO, H(2) + H(2)CCO, and CH(4) + CO are all minor (< or =5%).  相似文献   

16.
A global analytical potential energy surface for the ground state of H(3)(-) has been constructed by fitting an analytic function to the ab initio potential energy values computed using coupled cluster singles and doubles with perturbative triples [CCSD(T)] method and Dunning's augmented correlation consistent polarized valence triple zeta basis set. Using this potential energy surface, time-dependent quantum mechanical wave packet calculations were carried out to calculate the reaction probabilities (P(R)) for the exchange reaction H(-)+H(2)(v, j)-->H(2)+H(-), for different initial vibrational (v) and rotational (j) states of H(2), for total angular momentum equal to zero. With increase in v, the number of oscillations in the P(R)(E) plot increases and the oscillations become more pronounced. While P(R) increases with increase in rotational excitation from j=0 to 1, it decreases with further increase in j to 2 over a wide range of energies. In addition, rotational excitation quenches the oscillations in P(R)(E) plots.  相似文献   

17.
The two most recently published potential energy surfaces (PESs) for the HeH2 complex, the so-called MR (Muchnick and Russek) and BMP (Boothroyd, Martin, and Peterson) surfaces, are quantitatively evaluated and compared through the investigation of atom-diatom collision processes. The BMP surface is expected to be an improvement, approaching chemical accuracy, over all conformations of the PES compared to that of the MR surface. We found significant differences in inelastic rovibrational cross sections computed on the two surfaces for processes dominated by large changes in target rotational angular momentum. In particular, the H2(nu=1,j=0) total quenching cross section computed using the BMP potential was found to be a factor of 1000 larger than that obtained with the MR surface. A lesser discrepancy persists over a large range of energies from the ultracold to thermal and occurs for other low-lying initial rovibrational levels. The MR surface was used in previous calculations of the H2(nu=1,j=0) quenching rate coefficient and gave results in close agreement with the experimental data of Audibert et al. which were obtained for temperatures between 50 and 300 K. Examination of the rovibronic coupling matrix elements, which are obtained following a Legendre expansion of the PES, suggests that the magnitude of the anisotropy of the BMP potential is too large in the interaction region. However, cross sections for elastic and pure rotational processes obtained from the two PESs differ typically by less than a factor of 2. The small differences may be ascribed to the long-range and anharmonic components of the PESs. Exceptions occur for (nu=10,j=0) and (nu=11,j=1) where significant enhancements have been found for the low-energy quenching and elastic cross sections due to zero-energy resonances in the BMP PES which are not present in the MR potential.  相似文献   

18.
The C((3)P) + OH(X (2)Pi) --> CO(X (1)Sigma(g)(+)) + H((2)S) reaction has been investigated by ab initio electronic structure calculations of the X(2)A' state based on the multireference (MR) internally contracted single and double configuration interaction (SDCI) method plus Davidson correction (+Q) using Dunning aug-cc-pVQZ basis sets. In particular, the multireference space is taken to be a complete active space (CAS). Improvement over previously proposed potential energy surfaces for HCO/COH is obtained in the sense that present surface describes also the potential part where the CO interatomic distance is large. A large number of geometries (around 2000) have been calculated and analytically fitted using the reproducing kernel Hilbert space (RKHS) method of Ho and Rabitz both for the two-body and three-body terms following the many-body decomposition of the total electronic energies. Results show that the global reaction is highly exothermic ( approximately 6.4 eV) and barrierless (relative to the reactant channel), while five potential barriers are located on this surface. The three minima and five saddle points observed are characterized and found to be in good agreement with previous work. The three minima correspond to the formation of HCO and COH complexes and to the CO + H products, with the COH complex being a metastable minimum relative to the product channel. The five saddle points correspond to potential barriers for both the dissociation/formation of HCO and COH into/from CO + H, to barriers for the isomerization of HCO into COH and to barriers for the inversion of HCO and COH through their respective linear configuration.  相似文献   

19.
We report on a global potential energy hypersurface for the upper sheet of the lowest triplet state of H3+. The analytic representation is based on the double many-body expansion theory. The ab initio data points, calculated with a large cc-pV5Z basis, are represented with a root mean square deviation of only 5.54 cm(-1) in the energy region below the H(+)+2H(2S) dissociation threshold. The quasi-bound vibronic states supported by this surface have also been calculated.  相似文献   

20.
Vibrational relaxation of O2(X 3sigma(g)-, upsilon=2,3) by O2 molecules is studied via a two-laser approach. Laser radiation at 266 nm photodissociates ozone in a mixture of molecular oxygen and ozone. The photolysis step produces vibrationally excited O2(a 1delta(g)) that is rapidly converted to O2(X 3sigma(g)-, upsilon=2,3) in a near-resonant adiabatic electronic energy-transfer process involving collisions with ground-state O2. The output of a tunable 193-nm ArF laser monitors the temporal evolution of the O2(X 3sigma(g)-, upsilon=2,3) population via laser-induced fluorescence detected near 360 nm. The rate coefficients for the vibrational relaxation of O2(X 3sigma(g)-, upsilon=2,3) in collision with O2 are 2.0(-0.4)(+0.6) x 10(-13) cm3 s(-1) and (2.6+/-0.4) x 10(-13) cm3 s(-1), respectively. These rate coefficients agree well with other experimental work but are significantly larger than those produced by various semiclassical theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号