首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee GB  Lin CH  Lee KH  Lin YF 《Electrophoresis》2005,26(24):4616-4624
This paper presents systematic investigation of the microchannel surface properties in microCE chips. Three popular materials for microCE chips, polydimethylsiloxane (PDMS), quartz, and glass, are used. The zeta potentials of these microchannels are calculated by measuring the EOF velocity to evaluate the surface properties after surface modification. The hydrophobic PDMS is usually plasma-treated for microCE applications. In this study, a new method using a high-throughput atmospheric plasma generator is adopted to treat the PDMS surface under atmospheric conditions. In this approach, the cost and time for surface treatment can be significantly reduced compared with the conventional vacuum plasma generator method. Experimental results indicate that new functional groups could be formed on the PDMS surface after treatment, resulting in a change in the surface property. The time-dependent surface property of the plasma-treated PDMS is then measured in terms of the zeta potential. Results show that the surface property will reach a stable condition after 1 h of plasma treatment. For glass CE chips, two new methods for changing the microchannel surface properties are developed. Instead of using complicated and time-consuming chemical silanization procedures for CE channel surface modification, two simple and reliable methods utilizing organic-based spin-on-glass and water-soluble acrylic resin are reported. The proposed method provides a fast batch process for controlling the surface properties of glass-based CE channels. The proposed methods are evaluated using PhiX-174 DNA maker separation. The experimental data show that the surface property is modified and separation efficiency greatly improved. In addition, the long-term stability of both coatings is verified in this study. The methods proposed in this study show potential as an excellent solution for glass-based microCE chip surface modification.  相似文献   

2.
An overview of both experimental and theoretical studies of cell electrophoresis mobility (EPM) over the past fifty years and the relevance of cell EPM measurement are presented and discussed from the viewpoint of exploring the potential use of cell EPM as an index of the biological condition of cells. Physical measurements of the optical and/or electrical properties of cells have been attracting considerable attention as noninvasive cell-evaluation methods that are essential for the future of cell-based application technologies such as cell-based drug screening and cell therapy. Cell EPM, which can be measured in a noninvasive manner by cell electrophoresis, reflects the electrical and mechanical properties of the cell surface. Although the importance of cell EPM has been underestimated for a long time, mostly owing to the technical difficulties associated with its measurement, recent improvements in measurement technology using microcapillary chips have been changing the situation: cell EPM measurement has become more reliable and faster. Recent studies using the automated microcapillary cell electrophoresis system have revealed the close correlation between cell EPM and important biological phenomena including cell cycle, apoptosis, enzymatic treatment, and immune reaction. In particular, the converged EPM distribution observed for synchronized cells has altered the conventional belief that cell EPMs vary considerably. Finding a new significance of cell EPM is likely to lead to noninvasive cell evaluation methods essential for the next-generation of cell engineering.  相似文献   

3.
A novel tentacle-type polymer stationary phase covalently modified with branched polyethyleneimine (PEI) was developed for peptides and proteins separations by open-tubular CEC (OT-CEC). The preparation procedure included the silanization of capillary inner wall, in situ graft polymerization and PEI functionalization. A wrinkly polymer surface of multitudinous steric amine groups was evenly formed on the capillary inner wall, and anodic EOF could be gained within a wide pH range of 2.5-7.5. The electroosmotic mobility was examined for its dependence on pH as well as PEI concentrations. Good repeatability was gained with RSD for the migration time of EOF marker within 4.8% and satisfactory chemical stability was validated. Due to the existence of amine groups on the surface of tentacle-type polymer stationary phase, the silanol effect that occurs between the positively charged biomolecules and the silanols of the capillary column was greatly suppressed. Compared with a monolayer-coating capillary, seven enkephalin-related peptides were well resolved on the PEI-bonded column with high efficiencies. Favorable separations of peptides and proteins with high column efficiencies were obtained in 144,000-189,000 and 97,000-170,000 plates/m. Branched PEI-bonded tentacle-type polymer stationary phase has been proven to afford satisfactory retention and resolution of peptides and proteins.  相似文献   

4.
魏雨  纪璎  肖琳琳  计剑 《高分子学报》2010,(12):1474-1478
利用AIBN引发自由基反应,由单体2-(甲基丙烯酰氧基)乙基-2-(三甲基氨基)乙基磷酸酯(MPC)、甲基丙烯酸十八酯(SMA)、对硝基苯氧羰基聚乙二醇甲基丙烯酸酯(MEONP)合成了一种新型类细胞膜仿生涂层材料.MPC可以阻抗非特异性吸附;MEONP可以结合抗体或多肽促进特异性识别.通过表面固定的方法引入多肽序列Arg-Glu-Asp-Val(REDV),使涂层具有内皮细胞选择性.核磁、紫外吸收、红外光谱表征证实聚合物的组成以及REDV多肽在表面的固定;并通过血浆复钙化实验表征涂层的血液相容性.细胞黏附与增殖实验反映REDV多肽构建的涂层表面具备良好的特异性识别并结合内皮细胞的能力.  相似文献   

5.
Li W  Zhong Y  Lin B  Su Z 《Journal of chromatography. A》2001,905(1-2):299-307
A new program to characterize polyethylene glycol-modified (PEGylated) proteins is outlined using capillary zone electrophoresis (CZE). PEGylated ribonuclease A and lysozyme were selected as examples. Five separation procedures were compared to select out the mixed buffer of acetonitrile-water (1:1, v/v) at pH 2.5 as the best to characterize the PEGylated proteins without sample pretreatment. Polyethylene oxide (PEO) with a high molecular mass of 8 x 10(6) was applied to rinse the capillary to form a dynamic coating which would decrease the undesirable proteins adsorbed to the inner wall of the silica. The electroosmotic flow (EOF) mobility of the five procedures was determined, respectively. It is found that acetonitrile is mainly responsible for the good resolution of PEGylated proteins with the help of PEO coating in the semi-aqueous system. The low EOF mobility and current in the semi-aqueous system might also have some responsibility for the high resolution. The semi-aqueous procedure described in this paper also demonstrates higher resolution of natural proteins than aqueous ones.  相似文献   

6.
Positively charged starch derivatives were used to modify the inner surface of fused-silica capillaries by addition to running buffer, which were subsequently employed in capillary electrophoresis (CE). Capillaries coated with the cationic starch derivatives were shown to generate a stable, reversed electroosmotic flow (EOF) in the investigated pH range of 3-9. The presented coating procedure was fast, based on a simple rinsing protocol where the polymer created a physically adsorbed, cationic polymer layer. Among the additives studied, a quaternary ammonium starch derivative showed a fast EOF mobility and effectively suppressed the adsorption of proteins. The intra- and inter-day reproducibility of the coating referring to the EOF mobility were satisfactory with relative standard deviation (RSD) of 0.27 and 1.67%, respectively. The coating enabled separation of some protein mixtures including basic proteins within l3 min with efficiencies up to 280,000 plates/m. In addition, this cationic starch derivative possessed a good solubility (about 100mg/mL), and it does not significantly contribute to the background adsorption in the UV region of 190-400 nm.  相似文献   

7.
Li Y  Xiang R  Horváth C  Wilkins JA 《Electrophoresis》2004,25(4-5):545-553
A new kind of monolithic capillary column was prepared for capillary electrochromatography (CEC) with a positively charged polymer layer on the inner wall of a fused-silica capillary and a neutral monolithic packing as the bulk stationary phase. The fused-silica capillary was first silanized with 3-glycidoxypropyltrimethoxysilane (GPTMS). Polyethyleneimine (PEI) was then covalently bonded to the GPTMS coating to form an annular positively charged polymer layer for the generation of electroosmotic flow (EOF). A neutral bulk monolithic stationary phase was then prepared by in situ copolymerization of vinylbenzyl chloride (VBC) and ethylene glycol dimethacrylate in the presence of 1-propanol and formamide as porogens. Benzyl chloride functionalities on the monolith were subsequently hydrolyzed to benzyl alcohol groups. Effects of pH on the EOF mobility of the column were measured to monitor the completion of reactions. Using a column with this design, we expected general problems in CEC such as irreversible adsorption and electrostatic interaction between stationary phase and analytes to be reduced. A peptide mixture was successfully separated in counter-directional mode CEC. Comparison of peptide separations in isocratic monolithic CEC, gradient HPLC and capillary zone electrophoresis (CZE) indicated that the separation in CEC is governed by a dual mechanism that involves a complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

8.
Separation rates and resolutions within capillary electrophoretic (CE) systems can be enhanced when surface zeta potentials are uniform with minimum deviations from ideal pluglike flow. Microfluidic CE devices based on poly(methyl methacrylate) (PMMA) are being developed due to the optical clarity, availability, stability, and reproducible electroosmotic flow (EOF) rates displayed by this polymer. Control of EOF in polymer-based CE systems can be achieved by surface zeta potential alteration through chemical modification. Herein, a method will be presented for the surface functionalization of PMMA with chemistry analogous to formation of trichlorosilane self-assembled monolayers on SiO2. The current method involves two separate steps. First, surface activation with water-vapor plasma introduces surface hydroxylation. Second, treatment of the plasma-treated PMMA with a substituted trichlorosilane solution forms the functional surface layer. The modified surfaces were characterized using several analytical techniques, including water contact angle, X-ray photoelectron spectroscopy, Fourier transform infrared-attenuated total reflection, secondary ion mass spectroscopy, and measurement of EOF velocities within PMMA microchannels.  相似文献   

9.
Like other colloidal particles bacteria have a surface charge that originates from the ionization of surface molecules and of the adsorption of ions from solution. Bacterial cell wall and membranes containing numerous proteins, lipid molecules, teichoic acids, lipopolisaccharides which give them characteristic charge. Therefore, bacterial cells undergo electrophoresis in a free solution with their own mobility depending on ionic strength and pH of buffer solution. Various electromigration techniques can be used to separate and determine the intact cells. Successful separation of five species of bacteria was obtained using a trimethylchlorosilane-modified capillary and a divinylbenzene-modified with suppressed EOF over a short distance (8.5 cm). The utilization of coated capillaries prevents adsorption of bacteria to the capillary wall. Another approach is utilization of a dilute dissolved polymer, polyethylene oxide (PEO) in the running buffer as a non-bonded coating for the purpose of altering the EOE These experiment have proved the possibility of diagnosing a variety of diseases and the ability to separate and identify viable cells.  相似文献   

10.
Inexpensive and disposable polyester microchips were fabricated through photolithographic and wet-chemical etching procedure, followed by replication using an imprinting method at room temperature. Laboratory-scale laser-induced fluorescence equipment was employed as a detection system. The generation of electroosmotic flow (EOF) on the polyester channels was discussed in this paper. Surfactants in the running buffer had a significant effect on the EOF depending on their types. The epsilon potential of the electric double layer formed by adsorbing sodium lauryl sulfate molecules on the wall of polyester channels seemed to be constant within the buffer pH investigated. EOF could also be suppressed to zero by adding polyoxyethylene 23 lauryl ether into the running buffer. The separation of two laser dyes was obtained using polyester chips through both micellar electrokinetic chromatography and capillary zone electrophoresis. The polyester channels modified with 10-undecen-1-ol exhibited a dramatically high-separation efficiency compared with the conventional fused-silica capillary tubes.  相似文献   

11.
The effect of adding linear polymers to a novel reversible electrophoretic was measured. Reversible gels are formed using the polyanionic carbohydrate polymer, gellan gum. Gellan gum forms strong stable gels in the presence of divalent cations or diamines. The gels are reversible (return to solution) by changing the ionic environment or pH. Gellan gum is an anionic polymer, and the electrophoresis gels have considerable electroosmotic flow (EOF) toward the negative electrode. We measured the EOF in gellan gum electrophoresis gels as a function of gel concentration, buffer composition, and linear polymer additive. The linear polymers used in this study were polyethylene oxide and hydroxyethyl cellulose. Both polymers reduced EOF in the gels, in a manner dependent on molecular weight. Polymers with high molecular weight were more effective at reducing EOF. The addition of polymers increased the resolution of low molecular weight DNA. Native gellan gum resolved DNA from approx 50,000 to 1000 bp. Addition of the polymers resolved DNA down to approx 50 bp, in some instances. The influence of the polymers on circular plasmid DNA was also investigated. Addition of high molecular weight polyethylene oxide reduced the electrophoretic mobility of the nicked circular form compared to the supercoiled form.  相似文献   

12.
Wang Z  Chen Y  Yuan H  Huang Z  Liu G 《Electrophoresis》2000,21(8):1620-1624
Preparation and characterization of calixarene-coated capillaries for capillary electrophoresis (CE) were exemplified with p-allylcalix[4]arene (pACX4) which was immobilized to the fused silica surface using gamma-methacryloxypropyl-trimethoxysilane (gamma-MAPS) as linking agent. Successful gamma-ACX4 coating was suggested by the greatly decreased electroosmotic flow (EOF), due to the introduction of phenolic hydroxyl groups on the inner surface of the capillaries. A slight slope of EOF versus pH at pH <8 would help make the separation reproducible. The coated columns also featured a low ultraviolet (UV) absorption background and long lifetime (> 6 months at 4相似文献   

13.
K Shimura  K Kasai 《Electrophoresis》1989,10(4):238-242
The influence of a soluble anionic polymer on electrophoresis of proteins was studied in relation to the nonspecific ionic effect of an affinophore on application to affinophoresis. Zone electrophoresis of proteins was carried out in agarose gel in the presence of succinyl-poly-L-lysine (degree of polymerization, 120) by using three electrophoresis buffers differing in ionic strength (0.06, 0.12 and 0.18) and pH (7.0 and 7.9). Proteins migrated as distinct single bands even in the presence of the polymer. The mobility of cationic proteins towards the cathode was first decreased and then increased towards the anode as the polymer concentration increased, while that of anionic proteins was not affected. The dependence of the apparent mobility changes of the proteins on the concentration of the polymer was treated quantitatively in the same way as affinity electrophoresis. The extent of the ionic interaction between a cationic protein and the polymer could be estimated as an apparent dissociation constant. It greatly depended on the ionic strength of the electrophoresis buffer. Except for the extremely cationic proteins such as lysozyme, the ionic interaction with up to 0.1 mM of the polymer could be practically suppressed by the use of 0.1 M sodium phosphate buffer (pH 7.0).  相似文献   

14.
以十二烷基硫酸钠(SDS)/正己烷/正丁醇/硼砂微乳液为毛细管电色谱运行研究体系,以甲醇峰为微乳体系电渗流峰(EOF),考察不同pH值条件下微乳体系电渗流出峰时间(tEOF)和变化趋势.以微乳液滴粒径和ξ电位考察pH值对SDS缓冲溶液微乳体系微结构的影响,用微乳体系的电导值分析pH值条件下微乳液滴与氢氧根离子之间的相互...  相似文献   

15.
The analysis of peptides and proteins by CE is often desirable due to low sample consumption and possibilities for nondenaturing yet highly effective separations. However, adsorption to the inner surfaces of fused-silica capillaries often is detrimental to such analyses. This phenomenon is especially pronounced in the analysis of basic proteins and proteins containing exposed positively charged patches. To avoid wall interactions numerous buffer additives and static and dynamic wall coating principles have been devised. We previously showed (J. Chromatogr. A 2004, 1059, 215-222) that CE of the basic protein beta2-glycoprotein was rendered possible by an acidic pretreatment step, and we attributed this observation to the so-called pH hysteresis effect that influences the time for pH equilibration of the capillary wall and thus the effective wall charge and the electroosmotic mobility. We here investigate the effects of different pretreatment techniques on EOF values and on the rate of the deprotonation of silanol groups when performing the electrophoresis at neutral pH. We show the utility of this simple approach for the CE analysis of a number of basic proteins in plain silica capillaries at physiological pH.  相似文献   

16.
The surface properties of microfluidic devices play an important role in their flow behavior. We report here on an effective control of the surface chemistry and performance of polymeric microchips through a bulk modification route during the fabrication process. The new protocol is based on modification of the bulk microchip material by tailored copolymerization of monomers during atmospheric-pressure molding. A judicious addition of a modifier to the primary monomer solution thus imparts attractive properties to the plastic microchip substrate, including significant enhancement and/or modulation of the EOF (with flow velocities comparable to those of glass), a strong pH sensitivity and high stability. Carboxy, sulfo, and amino moieties have thus been introduced (through the incorporation of methylacrylic acid, 2-sulfoethyl-methacrylate and 2-aminoethyl-methacrylate monomers, respectively). A strong increase in the electroosmotic pumping compared to the native poly(methylmethacrylate)(PMMA) microchip (ca. electroosmotic mobility increases from 2.12 to 4.30 x 10(-4) cm(2) V(-1) s(-1)) is observed using a 6% methylacrylate (MAA) modified PMMA microchip. A 3% aminoethyl modified PMMA microchip exhibits a reversal of the electroosmotic mobility (for example, -5.6 x 10(-4) cm(2) V(-1) s(-1) at pH 3.0). The effects of the modifier loading and the pH on the EOF have been investigated for the MAA-modified PMMA chips. The bulk-modified devices exhibit reproducible and stable EOF behavior. The one step fabrication/modification protocol should further facilitate the widespread production of high-performance plastic microchip devices.  相似文献   

17.
A hydrophilic polymer, poly(vinylpyrrolidone) (PVP), was employed for suppressing the electroosmotic flow (EOF). A capillary was filled with aqueous PVP solution for coating the capillary wall with PVP; the PVP solution was then replaced by a migration buffer solution containing no PVP. Three types of PVP with different molecular weights were examined. The EOF was suppressed more effectively as the molecular weight of PVP increased. The EOF in the coated capillary was approximately 10-fold smaller than that of a bare capillary and was constant in the pH range of 6-8. The suppressed EOF was stable even when no PVP was added to the migration buffer. However, the EOF increased significantly when sodium dodecyl sulfate was added into the migration buffer. The method was applied for determining the electrophoretic mobilities of inorganic anions that have negative electrophoretic mobilities larger than the electroosmotic mobility of the bare capillary. A novel method for determining the electrophoretic mobilities was proposed based on the linear relationship between electric current and electrophoretic mobility. The electrophoretic mobility was proportional to the electric current. Therefore, the intercept of the regression equation represents the electrophoretic mobility at room temperature. The electrophoretic mobilities were in good agreement with the absolute electrophoretic mobilities.  相似文献   

18.
王延梅 《高分子科学》2013,31(4):691-701
A series of double-hydrophilic double-grafted PMA-g-PEG/PDMA copolymers, which contained poly(methacrylate) (PMA) as backbone, poly(ethylene glycol) (PEG) and poly(N,N-dimethylacrylamide) (PDMA) as side chains synthesized successfully by using reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP), were used as physical coatings for the evaluation of protein-resistant properties by capillary electrophoresis (CE). Electroosmotic flow (EOF) measurement results showed that the PMA-g-PEG/PDMA copolymer coated capillaries could suppress electroosmotic mobility in a wide pH range (pH = 2.8–9.8) and EOF mobility decreased with the increase of copolymer molecular mass and PDMA content. At the same time, protein recovery, theoretical plate number of separation and repeatability of migration time demonstrated that antifouling efficiency was improved with the increase of molecular mass and PEG content.  相似文献   

19.
Many cellular functions are regulated through protein isoforms. Changes in the expression level or regulatory dysfunctions of isoforms often lead to developmental or pathological disorders. Isoforms are traditionally analyzed using techniques such as gel- or capillary-based isoelectric focusing. However, with proper electro-osmotic flow (EOF) control, isoforms with small pI differences can also be analyzed using capillary zone electrophoresis (CZE). Here we demonstrate the ability to quickly resolve isoforms of three model proteins (bovine serum albumin, transferrin, alpha1-antitrypsin) in capillaries coated with novel dynamic coatings. The coatings allow reproducible EOF modulation in the cathodal direction to a level of 10(-9) m2V(-1)s(-1). They also appear to inhibit protein adsorption to the capillary wall, making the isoform separations highly reproducible both in peak areas and apparent mobility. Isoforms of transferrin and alpha1-antitrypsin have been implicated in several human diseases. By coupling the CZE isoform separation with standard affinity capture assays, it may be possible to develop a cost-effective analytical platform for clinical diagnostics.  相似文献   

20.
Xu Y  Takai M  Konno T  Ishihara K 《Lab on a chip》2007,7(2):199-206
A type of charged phospholipid polymer biointerface was constructed on a quartz microfluidic chip to control the electroosmotic flow (EOF) and to suppress non-specific protein adsorption through one-step modification. A negatively charged phospholipid copolymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), potassium 3-methacryloyloxypropyl sulfonate (PMPS) and 3-methacryloxypropyl trimethoxysilane (MPTMSi) moieties (referred to as PMBSSi) was synthesized to introduce such phosphorylcholine segments as well as surface charges onto the silica-based microchannels via chemical bonding. At neutral pH, the homogenous microchannel surface modified with 0.3 wt% PMBSSi in alcoholic solution, retained a significant cathodic EOF ((1.0 +/- 0.1) x 10(-4) cm(2) V(-1) s(-1)) with approximately one-half of the EOF of the unmodified microchannel ((1.9 +/- 0.1) x 10(-4) cm(2) V(-1) s(-1)). Along with another non-charged copolymer (poly(MPC-co-MPTMSi), PMSi), the regulation of the surface charge density can be realized by adjusting the concentration of PMBSSi or PMSi initial solutions for modification. Coincidently, the zeta-potential and the EOF mobility at neutral pH showed a monotonically descending trend with the decrease in the charge densities on the surfaces. This provides a simple but feasible approach to controlling the EOF, especially with regard to satisfying the requisites of miniaturized systems for biological applications requiring neutral buffer conditions. In addition, the EOF in microchannels modified with PMBSSi and PMSi could maintain stability for a long time at neutral pH. In contrast to the EOF in the unmodified microchannel, the EOF in the modified microchannel was only slightly affected by the change in pH (from 1 to 10). Most importantly, although PMBSSi possesses negative charges, the non-specific adsorptions of both anionic and cationic proteins (considering albumin and cytochrome c, respectively, as examples) were effectively suppressed to a level of 0.15 microg cm(-2) and lesser in the case of the 0.3 wt% PMBSSi modification. Consequently, the variation in the EOF mobility resulting from the protein adsorption was also suppressed simultaneously. To facilitate easy EOF control with compatibility to biomolecules delivered in the microfluidic devices, the charged interface described could provide a promising option.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号