首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apparent molar volumes of glycine, DL--alanine, L-valine, L-leucine, and L-phenylalanine in 0.5, 1.0, 2.0, 3.5, and 5.0 m B (mol-kg–1) aqueous solutions of glycerol have been obtained from solution densities at 25°C using precise vibrating-tube digital densimeter. The estimated partial molar volumes at infinite dilution V o 2 have been used to obtain the corresponding transfer volumes tr V 2 o from water to different glycerol–water mixtures. The transfer volumes are positive for glycine and DL--alanine, and both positive and negative for the other amino acids over the concentration range studied. Interaction coefficients have been obtained from McMillan–Mayer approach and the data have been interpreted in terms of solute–cosolute interactions.  相似文献   

2.
Well-known Picker flow microcalorimeters for the differential measurements of volumetric heat capacities have been employed in conjunction with vibrating tube densimeters to determine the molar heat capacity, volume, and the apparent properties in dilute aqueous solutions for 17 organic solutes of moderate hydrophobicity. The dependence on concentration of the apparent properties allowed the limiting partial molar quantities at infinite dilution to be extrapolated and the limiting partial molar excess quantities to be evaluated. Comparison with available literature data shows good agreement. The application of group contribution rules to the limiting partial properties has been tested using the original method and parameters proposed by Cabani et al. The predicted values of the partial molar volumes are in fair agreement with the present data except for some less common solutes. With partial molar heat capacities, the agreement is less satisfactory. To improve the performance of the method, missing parameters for some types of monofunctional and bifunctional molecules have been evaluated.  相似文献   

3.
Apparent molar volumes, V , of glycine, DL--alanine, DL--amino-n-butyric acid, L-valine, L-leucine, and diglycine in water and in 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 m B [molality of n-propanol in water (mol-kg–1)] aqueous solutions of n-propanol have been obtained from densities of their solutions at 25 °C measured by using a precise vibrating-tube digital densimeter. The calculated partial molar volumes of amino acids and diglycine at infinite dilution, V 2,m o , have been used to obtain the corresponding transfer volumes, tr V 2,m o , from water to different n-propanol–water mixtures. tr V 2,m o values are positive for glycine, DL-- alanine, and diglycine (except at lower concentration 1.0 m B ), negative for L-valine, and both positive and negative for the remaining amino acids over the concentration range studied. The side-chain contributions and hydration numbers have been calculated from V 2,m o data. Interaction coefficients have also been obtained from the McMillan–Mayer approach and the data have been interpreted in terms of various interactions.  相似文献   

4.
The excess molar volumes VE for binary liquid mixtures containing dipropylene glycol monomethyl ether and methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, and 1-heptanol have been measured using a continuous dilution dilatometer over the whole mole fraction range at 25°C at atmospheric pressure. VE are negative over the whole composition range except for the systems containing 1-pentanol, 1-hexanol, or 1-heptanol which are positve at every composition. VE increases in a positive direction with increase in chain length of the n-alcohol. The results have been used to estimate the excess partial molar volumes ViE of the components. The change of VE and ViE with composition and the number of carbon atoms in the alcohol molecule are discussed as a basis to understand some of the molecular interactions present in the mixtures:  相似文献   

5.
Partial molar volumes for a homologous series of amino acids and peptides have been measured in aqueous 1M sodium acetate, sodium thiocyanate, and sodium sulfate at 25°C. These data have been utilized in conjunction with the data in water to deduce partial molar volumes of transfer V 2,m 0(tr) from water to these aqueous salt solutions. The volumes of transfer for the amino acids and peptides are found to be positive. The interpretation is that this result arises from the dominant interaction of the sodium salts with the charged centers of amino acids and peptides. Thermal denaturation of the structurally homologous proteins lysozyme and -lactalbumin has been studied in the presence of these salts. Significant thermal stabilization of hen egg-white lysozyme has been observed in the presence of sodium acetate and sodium sulfate. However, the thermal stabilization observed for -lactalbumin is very small in the presence of these salts and sodium thiocyanate leads to a lowering of its thermal denaturation temperature. The rise in the surface tension of aqueous salt solutions with salt concentration has been correlated with the calorimetric and volumetric measurements. The results show that V 2,m 0(tr) depends less on the type of electrolyte than on the ionic strength of the solution. The V 2,m 0(tr) values correlate very well with the increase in the surface tension of aqueous salt solutions, indicating significant role of surface tension in interactions of amino acids, peptides, or protein with the salts.  相似文献   

6.
We have measured excess molar volumes VE m of binary mixtures of triethylene glycol monoethyl ether with methanol, ethanol, 1-propanol, 1-pentanol, and 1-hexanol over the full range of compositions at 25°C. The measurements were carried out with a continuous-dilution dilatometer. The excess molar volumes VE m are negative over the entire range of composition for the systems triethylene glycol monoethyl ether + methanol, + ethanol, and + 1-propanol and positive for the remaining systems, triethylene glycol monoethyl ether + 1-pentanol, and + 1-hexanol. The excess VE m increases in the positive direction with increasing chain length of the n-alcohol. The measured excess volumes have been compared to our previous published data with an effort to assess the effects of replacing methyl by ethyl groups and of inserting oxyethylene groups. The results have been used to estimate the excess partial molar volumes VE m,i of the components. The behavior of VE m and VE m,i with composition and the number of carbon atoms in the alcohol molecule is discussed.  相似文献   

7.
The excess molar volumes V E have been measured for binary mixtures of triethylene glycol monomethyl ether with methanol, ethanol, 1-propanol, 1-pentanol, and 1-hexanol as a function of composition using a continuous–dilution dilatometer at 25°C at atmosphere pressure. V E are negative over the entire range of composition for the systems triethylene glycol monomethyl ether + methanol, + ethanol, and + 1-propanol, and positive for the remaining systems, containing 1-pentanol and + 1-hexanol. V E increases in a positive direction with increasing carbon chain length of the n-alcohol. The excess partial molar volumes V i E of the components were evaluated from the V E results. The behavior of V E and V i E with composition and the number of carbon atoms in the alcohol molecule is discussed.  相似文献   

8.
Densities and heat capacities of dilute aqueous solutions (0.025 to 0.4 mol⋅kg−1) of trifluoromethanesulfonic acid (triflic acid) were measured with original high-temperature, high-pressure instruments at temperatures and pressures up to 574 K and 31 MPa, respectively. Standard molar volumes and standard molar heat capacities were obtained via extrapolation of the apparent molar properties to infinite dilution. The evolution of these standard derivative properties of triflic acid with temperature and pressure is qualitatively compared with that of other acids of different strengths.  相似文献   

9.
The partial molar volumes, Vo2, and partial molar heat capacities, Cp,2o, at infinite dilution have been determined for the two tripeptides glycylaspartylglycine (glyaspgly) and glycylglutamylglycine (glyglugly), and also for their salts K[glyaspgly] and Na[glyglugly], in aqueous solution at 25 °C. The ionization constants at 25 °C for the aspartyl and glutamyl side-chains have also been determined. These new thermodynamic results have been combined with literature data for electrolytes to obtain the volume and heat capacity changes upon ionization of the acidic side-chains of the peptides. The results are compared with those for other carboxylic acid systems. The partial molar heat capacities and volumes have also been used to calculate the contributions of the acidic amino acid side-chains to the thermodynamic properties.  相似文献   

10.
Densities for DMSO solutions of iron(III), aluminium(III), beryllium(II) and magnesium(II) perchlorates and silver nitrate are reported. Densities for DMSO solutions of tetraethylammonium perchlorate and nitrate and tetrabutylammonium perchlorate and tetraphenylborate are also presented. The partial molar volumes of the DMSO-solvated cations are derived and discussed in terms of variation with the charge number.  相似文献   

11.
Densities have been measured by an oscillating-tube densimeter for aqueous solutions of glycylglycine and glycylglycylglycine in aqueous xylitol solutions with xylitol mass fractions ranging from 0 to 0.15 at 298.15 K. Apparent molar volumes and limiting partial molar volumes have been used to calculate the corresponding transfer volumes from water to different concentrations of xylitol + water mixtures. The results are interpreted in terms of the cosphere overlap model.  相似文献   

12.
The solubilities of N-[tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid (TAPS) or N-[tris(hydroxymethyl)methyl]-3-amino-2-hydroxypropanesulfonic acid (TAPSO) in water and in aqueous solutions of CH3COOK (KAc), KBr, KCl, or NaCl were determined from density measurements at 298.15 K. The solubilities of TAPS in aqueous solution decrease with increasing concentration of the salts (salting-out effect), whereas those of TAPSO increase with increasing concentration of the salts (salting-in effect). The solubility and density data were further used to calculate the apparent transfer Gibbs energies, Δtr G, and transfer molar volumes, DtrVfo\Delta_{\mathrm{tr}}V_{\phi}^{\mathrm{o}}, of these buffers from water to aqueous electrolyte solutions at 298.15 K. The contributions of various functional groups of TAPS, TAPSO, and the related buffers (tris(hydroxymethyl)aminomethane, TRIS, and N-tris[hydroxymethyl]-4-amino-butanesulfonic acid, TABS) to the transfer properties were systematically estimated from the calculated Δtr G and DtrVfo\Delta_{\mathrm{tr}}V_{\phi}^{\mathrm{o}}.  相似文献   

13.
The partial molar volumes of uracil, thymine and adenine in water and adenine in aqueous solutions of uracil and thymine, at fixed composition, were determined over a range of temperatures. The partial molar volumes of adenine in aqueous uracil and thymine are less than in pure water.  相似文献   

14.
Excess molar volumes VmE at 25°C and atmospheric pressure over the entire composition range for binary mixtures of 1-hexanol with n-polyethers: 2,5-dioxahexane, 3,6-dioxaoctane, 2,5,8-trioxanonane, 3,6,9-trioxaundecane, 5,8,11-trioxapentadecane, 2,5,8,11-tetraoxadodecane, and 2,5,8,11,14-pentaoxapentadecane are reported from densities measured with a vibrating-tube densimeter. Systems containing 2,5-dioxahexane, 2,5,8-trioxanonane, 2,5,8,11-tetraoxadodecane or 2,5,8,11,14-pentaoxapentadecane are characterized by VmE > 0, probably due to predominant positive contributions to VmE from the disruption of H bonds of 1-hexanol and to physical interactions. In contrast, mixtures with 3,6-dioxaoctane, 3,6,9-trioxaundecane, and 5,8,11-trioxapentadecane are characterized by VmE < 0, indicating that the negative contribution to VmE from interstitial accommodation is more important.  相似文献   

15.
In this work, the partial molar volumes of glycine and dl-alanine in aqueous solutions of ammonium sulfate at 0.0, 0.1, 0.3, 0.7, and 1.0 mol·kg?1 are determined between 278.15 and 308.15 K. Transfer volumes were obtained, which are larger for glycine than dl-alanine. On the contrary, the hydration numbers are higher for dl-alanine than glycine, and dehydration of the amino acids is observed with increasing temperature or salt molality. The data suggest that interactions between ion and charged/hydrophilic groups are predominant and, by applying the methodology proposed by Friedman and Krishnan, it was concluded that they are mainly pairwise. A group-contribution scheme has been successfully applied to the pairwise volumetric interaction coefficient. Finally, the dehydration effect on glycine, alanine and serine in the presence of different electrolytes has been rationalized in terms of the charge density and a parameter accounting for the cation’s hydration.  相似文献   

16.
The partial molar volumes and isentropic compressions of aqueous solutions of tetrahydrofuran, tetrahydropyran, 1,4-dioxane, tetrahydropyran-2-methanol, 3-hydroxytetrahydrofuran, and tetrahydrofurfuryl alcohol were measured at 288.15, 298.15, and 313.15 K. Results are analyzed in terms of the effects of group addition to the molar volumes and isentropic compressions. The temperature dependence of the molar volumes and compressions, and their group contributions, are used to characterize changes in hydration.  相似文献   

17.
The vapor pressures p the excess partial molar enthalpies of glycerol H Gly E the densities d and the thermal expansivities p of aqueous glycerol were measured at 25°C. From the vapor pressure data, the excess chemical potential of H2O µ W E was calculated, assuming that the partial pressure of glycerol p Gly is negligibly small. The excess chemical potential of glycerol µ Gly E was estimated by applying the Gibbs–Duhem relation and these data were used to calculate the excess partial molar entropies S Gly E . From the density data, the excess partial molar volumes of glycerol V Gly E and from the thermal expansivity data, the normalized cross fluctuations SV, introduced by us earlier, were evaluated. While the detailed manner in which glycerol modifies the molecular arrangement of H2O in its immediate vicinity is yet to be elucidated, the hydrogen bond probability in the bulk H2O away from solute molecules is reduced gradually as the glycerol composition increases to the point where putative presence of icelike patches is no longer possible. Thereupon, a qualitatively different mixing scheme seems to set in.  相似文献   

18.
Apparent molar volumes (V 2,φ ) and heat capacities (C p2,φ ) of glycine in known concentrations (1.0, 2.0, 4.0, 6.0, and 8.0 mol⋅kg−1) of aqueous formamide (FM), acetamide (AM), and N,N-dimethylacetamide (DMA) solutions at T=298.15 K have been calculated from relative density and specific heat capacity measurements. These measurements were completed using a vibrating-tube flow densimeter and a Picker flow microcalorimeter, respectively. The concentration dependences of the apparent molar data have been used to calculate standard partial molar properties. The latter values have been combined with previously published standard partial molar volumes and heat capacities for glycine in water to calculate volumes and heat capacities associated with the transfer of glycine from water to the investigated aqueous amide solutions, D[`(V)]2,tro\Delta\overline{V}_{\mathrm{2,tr}}^{\mathrm{o}} and D[`(C)]p2,tro\Delta\overline{C}_{p\mathrm{2,tr}}^{\mathrm{o}} respectively. Calculated values for D[`(V)]2,tro\Delta\overline{V}_{\mathrm{2,tr}}^{\mathrm{o}} and D[`(C)]p2,tro\Delta\overline{C}_{p\mathrm{2,tr}}^{\mathrm{o}} are positive for all investigated concentrations of aqueous FM and AM solutions. However, values for D[`(C)]p2,tro\Delta\overline{C}_{p\mathrm{2,tr}}^{\mathrm{o}} associated with aqueous DMA solutions are found to be negative. The reported transfer properties increase with increasing co-solute (amide) concentration. This observation is discussed in terms of solute + co-solute interactions. The transfer properties have also been used to estimate interaction coefficients.  相似文献   

19.
Experimental molar heat capacity data (Cp m) and excess molar heat capacity data (CpEm\mathit{Cp}^{\mathrm{E}}_{\mathrm{m}}) of binary mixtures containing water + (formamide or N,N-dimethylformamide or dimethylsulfoxide or N,N-dimethylacetamide or 1,4-dioxane) at several compositions, in the temperature range 288.15 K to 303.15 K and atmospheric pressure, have been determined using a modified 1455 PAAR solution calorimeter. The excess heat capacities are positive for aqueous solutions containing 1,4-dioxane, N,N-dimethylformamide or dimethylsulfoxide, negative for solutions containing water + formamide and show a sigmoid behavior for mixtures containing water + N,N-dimethylacetamide, over the whole composition range. The experimental excess molar heat capacities are discussed in terms of the influence of temperature and of the organic solvent type present in the binary aqueous mixtures, as well as in terms of the existing molecular interactions and the organic solvent’s molecular size and structure.  相似文献   

20.
Excess chemical potentials and excess partial molar enthalpies of 1,2- and 1,3-propanediols (abbreviated as 12P and 13P), E i, and H E i (i = 12P or 13P) were determined in the respective binary aqueous solutions at 25°C. For both systems, the values of E i are almost zero, within ±0.4 kJ-mol–1. However, the excess partial molar enthalpies, H E i show a sharp mole fraction dependence in the water-rich region. Thus, the systems are highly nonideal, in spite of almost zero E i. Namely, the enthalpy-entropy compensation is almost complete. From the slopes of the H E i against the respective mole fraction x i we obtain the enthalpic interaction functions between solutes, H i–i E, (i = 12P or 13P). Using these quantities and comparing them with the equivalent quantities for binary aqueous solutions of 1-propanol (1P), 2-propanol (2P), glycerol (Gly), and dimethyl sulfoxide (DMSO), we conclude that there are three composition regions in each of which mixing schemes are qualitatively different. Mixing Schemes II and III, operative in the intermediate and the solute-rich regions, seem similar in all the binary aqueous solutions mentioned above. Mixing Scheme I in the water-rich region is different from solute to solute. 12P shows a behavior similar to that of DMSO, which is somewhat different from typical hydrophobic solute, 1P or 2P. 13P, on the other hand, is less hydrophobic than 12P, and shows a behavior closer to glycerol, which shows hydrophilic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号