首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex formation of crown ethers with cations in nonpolar medium with small amounts of polar solvents added has been studied. The goal has been to get deeper insight into the influence of solvation (hydration) of the salts for the formation of complexes with the macrocyclic ligand 18-crown-6 (18C6). A linear dependence of the reaction enthalpy for complex formation between 18C6 and alkali metal cations in chloroform in the presence of water or methanol has been observed. The presence of acetonitrile or acetone has had no influence upon the measured reaction enthalpies. The influence of methanol on the complex formation between 18C6 and alkali metal cations in chloroform is weaker than in the case of water. This underpins the selective solvation of alkali cations in chloroform after the addition of small amounts of water or methanol. The experiments have been performed using calorimetric titrations.  相似文献   

2.
The complexation reactions of crown ethers with monovalent cations and Ba2+ were studied in acetonitrile solutions by means of calorimetric and potentiometric titration. The reaction enthalpies measured clearly demonstrate the influence of the interactions between 18-crown-6 and the acetonitrile solvent molecules. Changing the donor atoms or other substituents on the ligand molecule can exert a strong influence on the interactions with the solvent. Thus, all the reaction enthalpies measured for the reaction of 15-crown-5 with different cations are higher compared with 18-crown-6. On comparison with results in methanol, an approximate estimation is made of the influence of solvent molecules on the reaction enthalpies measured in acetonitrile. Due to the strong interaction between silver ion and acetonitrile, complex formation is only observed with crown ethers containing additional nitrogen or sulphur donor atoms.  相似文献   

3.
The complex formation between different crown ethers and the cryptand [222] with alkali metal and ammonium ions in chloroform has been investigated by means of calorimetric titrations. The stability constants, reaction enthalpies and entropies for complex formation in chloroform have been determined. The complexation of alkali metal ions is favored by enthalpic contributions and influenced by both the ligand and the nature of the cation. The reaction enthalpies for complex formation of different ammonium salts with cryptand [222] are higher compared to the corresponding values for the reaction with different 18-crown-6 derivatives in chloroform due to the complete encapsulation of ammonium ion by the cryptand [222]. The benzo group attached to the crown ethers and the nature of the anion borne by the ammonium ion influence complex formation of ammonium with crown ethers. In the case of ammonium salts, competitive measurements have been carried out to underline the influence of the anion upon the complex formation. From the reaction enthalpies for complexation of ammonium ions, the contributions for the formation of hydrogen bonds are calculated using experimental data. Taken in part from the Ph.D. thesis of R.-C. Mutihac, University Duisburg-Essen, 2007.  相似文献   

4.
A review of the experimental and theoretical studies of the crown ether complexes with polar molecules in their crystals, solutions, and in a gas phase is given. The type of the molecular bonds in the complexes, their stoichiometry, and the change in the macrocycle conformation during complex formation are considered, as well as the effect of the macrocycle structure and the nature of the medium on the efficiency of the molecular bonding. New data are given on the enthalpies of transfer of the crown ethers from tetrachloromethane into solvents capable of forming hydrogen bonds. The enthalpies of specific interactions of macrocycles with the molecules of the solvents in the medium of the same solvents are characterized. The conformations of the crown ethers in the media under study are discussed.  相似文献   

5.
《Supramolecular Science》1998,5(1-2):139-142
The complexation of the ammonium ion with the macrocyclic ligand 18-crown-6 was studied using calorimetric and potentiometric titrations in different solvents. In water and dimethyl sulphoxide the stability constants had the lowest values compared with all other solvents examined. No specific interactions between the ammonium ion and solvent molecules were observed. Crown ethers formed more stable complexes in methanol with the ammonium ion than diaza crown ethers. The most stable complexes were formed with cryptands. The highest values of the stability constants for the reaction with macrocyclic and macrobicyclic ligands were measured if the dimensions of the ammonium ion and of the cavities were nearly identical.  相似文献   

6.
Host–guest complexation between crown ether-based cryptand hosts and a carbonium ion, tropylium hexafluorophosphate was studied. 1H NMR, NOESY NMR, and electrospray ionization mass spectrometry were employed to characterize these inclusion complexes. The contrast tests of 1H NMR and association constants indicated that cryptands are much better hosts for tropylium hexafluorophosphate than the corresponding simple crown ethers. C–H?O hydrogen bonding, face-to-face π-stacking interactions, and charge-transfer interactions are thought to be the main driving forces for the formation of these host–guest complexes. These multiple non-covalent interactions may jointly contribute to the complex formation and considerably reinforce the complex stability. Moreover, the complexation between dibenzo-24-crown-8-based cryptand 4 and tropylium hexafluorophosphate 7 can be reversibly controlled by adding KPF6 and then DB18C6 in 1:1 acetonitrile/chloroform, providing a new cation-responsive host–guest recognition motif for supramolecular chemistry.  相似文献   

7.
Abstract

The complexation of akaline earth cations by non-cyclic polyethers, crown ethers and cryptands was studied in acetone by means of potentiometric and calorimetric titrations. The results show that the stabilities of the complexes decrease in the order: cryptands, crown ethers and noncyclic polyethers. Interactions between the different ligands and solvent molecules influence the stability of the complexes formed when compared with methanol as solvent.  相似文献   

8.
Stability constants and thermodynamic values for the complex formation of alkali ions by crown ethers, diaza crown ethers and cryptands have been measured by means of potentiometric and calorimetric titrations in acetone as solvent. The interactions between the ligands and solvent molecules play an important role for the complex formation. Cryptands form the most stable complexes with alkali ions if inclusion complexes are formed. Even in the case that the salts are not completely dissociated in acetone the presence of ion pairs does not influence the calculated values of the stability constants.  相似文献   

9.
《Tetrahedron: Asymmetry》2001,12(8):1125-1130
Two chiral crown ethers derived from methyl β-d-galactopyranoside are examined as chiral NMR discriminating agents for protonated primary amines, amino alcohols, and amino acids. In combination, the solubility and use of the two crown ethers span a range of common NMR solvents including chloroform, acetonitrile, and methanol, which are compatible with the solubilities of various protonated amines. Enantiomeric discrimination is observed in the spectra of most substrates in the presence of the crown ethers. In several cases, the enantiomeric discrimination is larger than observed with previously reported chiral crown ethers. The crown ether V contains a β-diol unit capable of forming a chelate bond with lanthanide(III) ions. Adding ytterbium(III)nitrate to NMR samples in acetonitrile containing V causes substantial enhancements in the enantiodiscrimination in the spectra of several substrates.  相似文献   

10.
The UV-vis spectroscopic behavior of dyes: 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (1) and 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (2) was investigated in solutions of methyl- beta-cyclodextrin (methyl-beta-CyD), using water, methanol, ethanol, propan-2-ol, butan-1-ol, acetone, acetonitrile, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), chloroform and dichloromethane as solvents. In aqueous solutions of dye (2) the addition of M-beta-CD leads to a bathochromic shift (of the maximum absorption), showing that the probe was transferred to a microenvironment of lower polarity and suggesting the formation of a 1 : 1 dye (2) : CyD inclusion complex, with a binding constant of 128.5 +/- 3.5 dm(3) mol(-1). Data for dye 2 in alcohols showed hypsochromic shifts, which increased in the following order: methanol < ethanol < propan-2-ol < butan-1-ol. These observations appear to reflect dye-solvent interactions through hydrogen bonding. If dye-solvent interactions are strong, the CyD-dye interactions are consequently weak, but the latter increase in importance when the dye-solvent interaction becomes weaker. With hydrogen-bond accepting solvents, data for both dyes showed clearly increasing hypsochromic shifts following the order: DMSO < DMA < DMF < acetone < acetonitrile. This order is exactly the inverse of the increasing order of basicity of the medium. This indicates that the dominant factor for the observed effects in these solvents is the solvent-CyD interaction through hydrogen bonding involving the hydroxyl groups of the CyD and the basic groups of the solvents. These interactions diminish in intensity if the basic character of the medium is reduced, increasing the capability of the dye to interact with the CyD using its phenoxide donor moiety. The largest hypsochromic shifts were obtained in chloroform (66.0 nm) and dichloromethane (67.5 nm) with dye after addition of methyl-beta-CyD. In these specific situations, solvents display weak basic and acid properties, that enhanced CyD-dye interactions to such an extent that association complexes formed through hydrogen bonding could be detected (K11) values of 24.8 +/- 4.9 dm3 mol(-1) in dichloromethane and 66.1 +/- 8.0 dm3 mol(-1) in chloroform).  相似文献   

11.
The complexation ability of a partially substituted lower rim calix[4]arene hydroxyamide derivative, 25,27-bis[N-(2-hydroxy-1,1-bishydroxymethylethyl)amino- carbonylmethoxy]calix[4]arene-26,28-diol, 1, for cations and anions was investigated through (1)H NMR, conductometry, spectrophotometry, and calorimetry in dipolar aprotic media. (1)H NMR studies of 1 in the deuterated solvents (acetonitrile, methanol, and dimethylsulfoxide) reflect ligand-solvent interactions in methanol and dimethylsulfoxide. As far as the cations are concerned, a selectivity peak is found when standard Gibbs energies of complexation of 1 with cations (alkaline-earth, zinc, and lead) are plotted against corresponding data for cation hydration. This finding reflects the key role played by the desolvation and binding processes in the overall complexation of this receptor and these cations in acetonitrile. This is also interpreted in terms of enthalpy and entropy data. Factors such as, the nature and the arrangement of donor atoms in the hydrophilic cavity of the ligand on cation complexation process, are discussed. This paper also addresses anion complexation processes. It is found that 1 interacts through hydrogen bond formation with fluoride, dihydrogen phosphate, and pyrophosphate in acetonitrile and N,N-dimethylformamide. The thermodynamics associated with these processes is fully discussed taking into account literature data involving calix[4]pyrroles and these anions in these solvents. Previous work regarding the water solubility of these ligands is discussed. It is concluded that 1 behaves as a ditopic ligand in dipolar aprotic media.  相似文献   

12.
本文用一维及二维NMR方法研究了溶剂对15冠5(15C5)和苯并15冠5(B15C5)与Mg~(2+)配合的影响。结果表明,在丙酮,乙腈,硝基甲烷,四氢呋喃以及氯仿中,冠醚与Mg~(2+)形成稳定的1:1配合物,且配合态与自由态冠醚间的化学交换在NMR标尺上为慢交换过程;而在二甲亚砜,二甲基甲酰胺,二甲基乙酰胺和吡啶中,由于溶剂对Mg~(2+)的竞争作用而使冠醚未能与Mg~(2+)有效配合。  相似文献   

13.
The reactions between alkali metal ions and crown ethers, aza crown ethers, and cryptands in propylene carbonate were studied by potentiometric and calorimetric titrations. The most stable complexes formed by macrocyclic and macrobicyclic ligands are when the ligand and cation dimensions are comparable. On comparing the complex stabilities of crown ethers and aza crown ethers of the same size, crown ethers were, on the whole, found to form the most stable complexes, with the exception of the lithium cation. Enthalpic factors are responsible. Substitution of the amino group protons of the aza crown ethers by benzyl groups leads to a high increase in values of the reaction enthalpy. This effect is partly compensated by entropic contributions. The bulky benzyl groups reduce the ligand solvent interactions and induce a ligand conformation with the lone pair of electrons from the nitrogen donor atoms which are more or less directed inside the cavity. The thermodynamic data for the transfer from methanol to propylene carbonate indicate that the ligands containing nitrogen show specific interactions with methanol.This paper is dedicated to Professor H. Strehlow on the occasion of his 70th birthday.  相似文献   

14.
Excess enthalpies of binary systems of acetonitrile—acetone, chloroform—acetone and chloroform—benzene, and ternary systems of acetonitrile—chloroform—acetone and acetonitrile—chloroform—benzene are reported at 25°C. The results are analyzed with thermodynamic association theory for complex ternary liquid mixtures. The theory involves two types of self-association of acetonitrile, formation and binary complexes for component pairs of a ternary system, and a nonspecific interaction term expressed by the NRTL equation between various chemical species.  相似文献   

15.
Calorimetry was used to measure the enthalpies of solution of chloroform in various proton-acceptor solvents and, vice versa, proton-acceptors in chloroform. Based on a previously proposed equation, the enthalpies of specific interaction were calculated and compared with the published data on the enthalpy of hydrogen bonding of chloroform with various proton-acceptor solvents. The composition of the H-bonded complexes mainly formed during the dissolution of proton-acceptor solutes in chloroform was established. It was demonstrated that the dissolution of ethers in chloroform is predominantly accompanied by the formation of 1: 1 complexes, while the dissolution of acetone, dimethylformamide, and dimethyl sulfoxide in chloroform gives rise to more complex associates.  相似文献   

16.
The formation of complexes between crown ethers and acetonitrile, chloroform, and nitromethane were investigated in carbon tetrachloride at 25°C. A significant influence of the ring size on the selectivity of the host is evident. The host 18-crown-6 forms complexes for which the reaction enthalpy and entropy are quite high. Host molecules with benzene side groups form complexes of lower reaction enthalpy and entropy and therefore the complexes formed are less stable than that of the analogous crown ethers without aromatic groups. Solvent effects on the stability constant K, the reaction enthalpy H, and the reaction entropy S were studied for the complexation of malonitrile by 18-crown-6. The reaction enthalpy and entropy values change in accordance with the dielectric constant of the solvent used, but no overall effect on complex stability with change in solvent dielectric constant was observed.  相似文献   

17.
Enthalpies of solution of 1,4-dioxane, 12-crown-4 ether (12C4), 15-crown-5 ether (15C5) and 18-crown-6 (18C6) have been analyzed from the point of view of preferential solvation of these cyclic ethers (crown ethers) by a molecule of acetone or dimethylsufoxide in the mixtures of water with acetone or dimethylsulfoxide. It has been observed that the carbonyl carbon atom replacement in acetone molecule by sulfur atom brings about completely different behavior of molecules of these solvents in relation to cyclic ethers dissolved in mixed solvents. Crown ethers are preferentially solvated by acetone (ACN) molecules, which is not observed in the case of dimethylsulfoxide (DMSO).  相似文献   

18.
Crystallisation of trithiocyanuric acid (TTCA) from various organic solvents that have hydrogen bonding capability (acetone, 2-butanone, dimethylformamide, dimethyl sulfoxide, methanol and acetonitrile) leads to the formation of co-crystals in which the solvent molecules are incorporated together with TTCA in the crystal structure. Structure determination by single-crystal X-ray diffraction reveals that these co-crystals can be classified into different groups depending upon the topological arrangement of the TTCA molecules in the crystal structure. Thus, three different types of single-tape arrangements of TTCA molecules and one type of double-tape arrangement of TTCA molecules are identified. In all co-crystals, hydrogen-bonding interactions are formed through the involvement of N-H bonds of TTCA molecules in these tapes and the other molecule in the co-crystal. Detailed rationalisation of the structural properties of these co-crystals is presented.  相似文献   

19.
Crown ethers are preferential solvated by organic solvents in the mixtures of water with formamide, N-methylformamide, acetonitrile, acetone and propan-1-ol. In these mixed solvents the energetic effect of the preferential solvation depends quantitatively on the structural and energetic properties of mixtures. The energetic properties of the mixtures of water with hydrophobic solvents (N,N-dimethylformamide, dimethylsulfoxide, N,N-dimethylacetamide, hexamethylphosphortriamide) counteract the preferential solvation of the crown ether molecules. The effect of the hydrophobic and acid-base properties of the mixture of water with organic solvent on the solvation of 12-crown-4, 15-crown-5, 18-crown-6 and benzo-15-crown-5 ethers was discussed. The solvation enthalpy of one -CH2CH2O- group in water, N,N-dimethylformamide and hexamethylphosphortriamide is equal to −24.21, −16.04 and −15.91 kJ/mol, respectively. The condensed benzene ring with 15-crown-5 ether molecule brings about an increase in the exothermic effect of solvation of the crown ether in the mixtures of water with organic solvent.  相似文献   

20.
The standard changes in enthalpy during the solvation of 1,4-dioxane in methanol, ethyl acetate, DMF, and acetonitrile were determined from calorimetric data and compared with the literature data for a series of solvents with different polarities. The standard changes in the Gibbs energy during the solvation of 1,4-dioxane in a wide series of solvents were calculated from the activity coefficients reported in the literature. The variation of the solvation functions of low-polar 1,4-dioxane in the series of solvents was found to be consistent with the enthalpy-entropy compensation rule. The results for 1,4-dioxane were compared with those for its open-chain analog and related large cyclic molecules. The electrostatic interactions of the solute with the solvents did not markedly affect the thermodynamic characteristics of ether in media with different polarities, but affected the interaction of the solute with the solvent more significantly. The solvation of the small ring of 1,4-dioxane in aprotic solvents was accompanied by a more significant exothermal effect than in the case of its open-chain analog. The conclusion was drawn that the enthalpies of the formation of hydrogen bonds between 1,4-dioxane and the associated water and chloroform molecules in solution were smaller in magnitude than the bonds of the similar open-chain polyether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号