首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics of Zn phthalocyanine (ZnPc) encapsulated in dipalmitoyl-phosphatidylcholine (DPPC) liposomes, injected intravenously in Skh:HR-1 nude mice, was monitored by two in vitro techniques and one in vivo technique, all based on fluorescence spectroscopy. The in vitro methods involve either fluorescence measurements on thin tissue sections or on extracts from these tissues. The in vivo method involves the fluorescence measurement at the skin surface. Both in vitro techniques gave similar results which are consistent with previous findings on the pharmacokinetic behavior of ZnPc. The liver and spleen showed rapid ZnPc concentration increases, reaching a maximum level in 30 min. or less post drug administration. Relatively little ZnPc was detected in the skin, fat or muscle, the maximum concentration occurring at 12 h. In vivo fluorescence reached a maximum intensity approx. 6 h post injection at the mid-chest analysis site and at 12 h in the thigh. The in vivo measurements at two different anatomical sites showed pharmacokinetic behavior that reflects an overall integrated fluorescence originating from several tissue sites.  相似文献   

2.
In this paper we describe conversion of light energy into electric energy in a photoelectrochemical cell containing zinc phthalocyanine (ZnPc) dyes. For all dyes investigated in liquid polyvinyl alcohol with dimethyl sulfoxide solution and located in the photoelectrochemical cell the following measurements have been done: absorption, fluorescence, photoacoustic spectra, photovoltaic spectra, kinetics of photocurrent and current–voltage characteristics. It has been shown that all dyes located in the photoelectrochemical cell are able to convert light into electric energy but with different effectiveness. The influence of substituted different peripheral groups to ZnPc core and the correlation between the molecular structure and effectiveness of solar to electric energy conversion were observed and described. The unique behavior of ZnPc substituted with fluorines was indicated.  相似文献   

3.
A study on electron transfer in three electron donor-acceptor complexes is reported. These architectures consist of a zinc phthalocyanine (ZnPc) as the excited-state electron donor and a fullerene (C60) as the ground-state electron acceptor. These complexes are brought together by axial coordination at ZnPc. The key variable in our design is the length of the molecular spacer, namely, oligo-p-phenylenevinylenes. The lack of appreciable ground-state interactions is in accordance with strong excited-state interactions, as inferred from the quenching of ZnPc centered fluorescence and the presence of a short-lived fluorescence component. Full-fledged femtosecond and nanosecond transient absorption spectroscopy assays corroborated that the ZnPc ⋅ +-C60 charge-separated state formation comes at the expense of excited-state interactions following ZnPc photoexcitation. At a first glance, the ZnPc ⋅ +-C60 charge-separated state lifetime increased from 0.4 to 86.6 ns as the electron donor-acceptor separation increased from 8.8 to 29.1 Å. A closer look at the kinetics revealed that the changes in charge-separated state lifetime are tied to a decrease in the electronic coupling element from 132 to 1.2 cm−1, an increase in the reorganization energy of charge transfer from 0.43 to 0.63 eV, and a large attenuation factor of 0.27 Å−1.  相似文献   

4.
Two new supramolecular architectures based on zinc phthalocyanine (Pc) and imidazolyl‐substituted perylenediimide (PDI), ZnPc/DImPDI/ZnPc 1 and ZnPc/ImPDI 2 , have been prepared. A strong electron‐donor, 8 , which contained eight tert‐octylphenoxy groups was synthesized to ensure high solubility, thereby reducing aggregation in solution and providing σ‐donor features while avoiding regioisomeric mixtures. Also, PDI units were functionalized with tert‐octylphenoxy groups at the bay positions, which provide solubility to avoid aggregation in solution, together with one and two imidazole moieties in the amide position, 6 and 4 , respectively, to be able to strongly coordinate with the ZnPc complex. Supramolecular complexation studies by 1H NMR spectroscopy and ESI‐MS demonstrate a high coordinative binding constant between imidazole‐substituted 4 or 6 and 8 . The same results were confirmed by UV/Vis and fluorescence titration studies. UV/Vis titration studies revealed the formation of a 1:1 complex ZnPc/ImPDI 2 for the systems 8 and 6 and a 2:1 complex ZnPc/DImPDI/ZnPc 1 for the interaction of 8 and 4 . The binding constant in both cases was determined to be on the order of 105 M −1. Femtosecond laser flash photolysis measurements provided a direct proof of the charge‐separated state within both supramolecular assemblies by observing the transient absorption band at 820 nm due to the zinc phthalocyanine radical cation. The lifetimes of charge‐separated states are (9.8±3) ns for triad 1 and (3±1) ns for dyad 2 . As far as we know, this is the first time that a radical ion pair has been detected in a supramolecular assembled ZnPc–PDI system and has obtained the longest lifetime of a charge‐separated state published for ZnPc–PDI assemblies.  相似文献   

5.
A panchromatic 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene –zinc phthalocyanine conjugate (Bodipy–ZnPc) 1 was synthesized starting from phthalocyanine aldehyde 4 , via dipyrromethane 3 and dipyrromethene 2 . Conjugate 1 represents the first example in which a Bodipy unit is tethered to the peripheral position of a phthalocyanine core. Electrochemical and optical measurements provided evidence for strong electronic interactions between the Bodipy and ZnPc constituents in the ground state of 1 . When conjugate 1 is subjected to photoexcitation in the spectral region corresponding to the Bodipy absorption, the strong fluorescence characteristic of the latter subunit is effectively quenched (i.e., ≥97 %). Excitation spectral analysis confirmed that the photoexcited Bodipy and the tethered ZnPc subunits interact and that intraconjugate singlet energy transfer occurs with an efficiency of ca. 25 %. Treatment of conjugate 1 with N‐pyridylfulleropyrrolidine ( 8 ), an electron‐acceptor system containing a nitrogen ligand, gives rise to the novel electron donor–acceptor hybrid 1 ? 8 through ligation to the ZnPc center. Irradiation of the resulting supramolecular ensemble within the visible range leads to a charge‐separated Bodipy–ZnPc.+–C60.? radical‐ion‐pair state, through a sequence of excited‐state and charge transfers, characterized by a remarkably long lifetime of 39.9 ns in toluene.  相似文献   

6.
A water-soluble zinc phthalocyanine (Pc), ZnPc (3), bearing 12 dimethylamino groups, which enhance the solubility of the macrocycle was synthesized and characterized. Photobleaching of the compound was examined both in vivo and in vitro. Laser irradiation causes photo-oxidation of the newly synthesized ZnPc. A photobleachable phthalocyanine can be an alternative in imaging; phthalocyanine dyes are used in imaging the cardiovascular system. Besides, it can be used in fluorescein angiography in some cases. When compared to stable ones, a photobleaching ZnPc (3) might be an attractive compound for imaging in medicine.  相似文献   

7.
New covalently C60‐connected zinc phthalocyanine (ZnPc) derivatives have been synthesized by utilizing successive cycloaddition reactions of C60 with a ZnPc derivative containing a pyridazine moiety employing Komatsu’s method in reaction of C60 with phthalazine. The UV/Vis absorption spectrum of the fused conjugate ( 5 ) shows red shifts from the corresponding absorption of ZnPc derivative ( 8 ), indicating interactions between the ZnPc and C60 moieties. The DFT calculations under non‐polar medium predict that the HOMO and LUMO of 5 localize on the ZnPc moiety, whereas LUMO+1 localizes on the C60 moiety, which reasonably explain the magnetic circular dichroism (MCD) and absorption spectra in toluene. Electrochemical redox potentials of 5 in polar solvents indicate the first‐oxidation potential arises from the ZnPc moiety, whereas the first reduction potential is associated with the C60 moiety, suggesting the LUMO localizes on the C60 moiety in polar solvent. This reversal of the LUMO is supported by the ZnPc‐fluorescence quenching with a nearby C60 moiety in benzonitrile, which leads to the charge‐separation via the excited singlet state of the ZnPc moiety. In toluene on the other hand, such a ZnPc‐fluorescence quenching owing to the photoinduced charge separation is not observed as predicted by the DFT‐calculated LUMO on the ZnPc moiety.  相似文献   

8.
Lyciumruthenicum Murray (L. ruthenicum) has been used both as traditional Chinese medicine and food. Recent studies indicated that anthocyanins are the most abundant bioactive compounds in the L. ruthenicum fruits. The purpose of this study was to investigate the preventive effects and the mechanism of the anthocycanins from the fruit of L. ruthenicum (ACN) in high-fat diet-induced obese mice. In total, 24 male C57BL/6J mice were divided into three groups: control group (fed a normal diet), high-fat diet group (fed a high-fat diet, HFD), and HFD +ACN group (fed a high-fat diet and drinking distilled water that contained 0.8% crude extract of ACN). The results showed that ACN could significantly reduce the body weight, inhibit lipid accumulation in liver and white adipose tissue, and lower the serum total cholesterol and low-density lipoprotein cholesterol levels compared to that of mice fed a high-fat diet. 16S rRNA gene sequencing of bacterial DNA demonstrated that ACN prevent obesity by enhancing the diversity of cecal bacterial communities, lowering the Firmicutes-to-Bacteroidota ratio, increasing the genera Akkermansia, and decreasing the genera Faecalibaculum. We also studied the inhibitory effect of ACN on pancreatic lipase. The results showed that ACN has a high affinity for pancreatic lipase and inhibits the activity of pancreatic lipase, with IC50 values of 1.80 (main compound anthocyanin) and 3.03 mg/mL (crude extract), in a competitive way. Furthermore, fluorescence spectroscopy studies showed that ACN can quench the intrinsic fluorescence of pancreatic lipase via a static mechanism. Taken together, these findings suggest that the anthocyanins from L. ruthenicum fruits could have preventive effects in high-fat-diet induced obese mice by regulating the intestinal microbiota and inhibiting the pancreatic lipase activity.  相似文献   

9.
The effects of solvents on the singlet oxygen, photobleaching and fluorescence quantum yields for zinc phthalocyanine (ZnPc) and its derivatives; (pyridino)zinc phthalocyanine ((py)ZnPc), zinc octaphenoxyphthalocyanine (ZnOPPc) and zinc octaestronephthalocyanine (ZnOEPc), is presented. The effects of the solvents on the ground state spectra are also discussed. The largest red shift of the Q band was observed in aromatic solvents, the highest shift being observed for 1-chloronaphthalene. Higher singlet fluorescence quantum yields were observed in THF for ZnPc and ZnOPPC. Also in the same solvent phototransformation rather than photobleaching was observed for ZnOPPc. Split Q band in the emission and excitation spectra of ZnOPPc was observed in some solvents and this is explained in terms of the lowering of symmetry following excitation.  相似文献   

10.
–P-Type delayed fluorescence and sensitised P-Type delayed fluorescence have been observed from solutions of chlorophylls a and b in ethanol. E-Type delayed fluorescence has been observed from solutions in propylene glycol. The measurements in propylene glycol have yielded approximate values for the triplet energies of chlorophylls a and b. Measurements of the emissions from the ethanolic solutions have been used to calculate approximate values of the triplet formation efficiencies in this solvent. The sums of the fluorescence and triplet formation efficiencies in ethanol fall far short of unity and the triplet formation efficiencies therefore need to be confirmed by an independent method before they can be accepted with confidence.  相似文献   

11.
Abstract— Time resolved fluorescence measurements, carried out on protochlorophyllide reductase enriched membranes from oat ( Avena sativa ), are described. A fast (1 ns at 293 K) decaying fluorescence component is assigned to the photoactive NADPH-protochlorophyllide-enzyme complex, while a slower (5 ns) component is ascribed to non-photoactive protochlorophyllide. The results are interpreted in terms of a new fast primary step in the light requiring step of chlorophyll synthesis. The temperature dependence of the rate of this reaction has been studied by measuring the decay time of the fast fluorescence component at various temperatures from 77 to 293 K. Complete spectra of the kinetic fluorescence components have been measured at 293, 160 and 77 K.  相似文献   

12.
A tetra-substituted phthalocyanine based on 4-[2-(4-nitrophenoxy)ethoxy]phthalonitrile carrying nitrophenyl group for the sensing of Zn2+ has been prepared and characterized by elemental analysis, FT-IR, 1H and 13C NMR, and MS spectral data. The sensing of Zn2+ is based on the fluorescence quenching of Pc. Both absorbance and fluorescence spectra of ZnPc exhibit distinct changes in visible region in response to treatment with Zn2+ ion in dimethyl sulfoxide. The fluorescence spectrum of the ligand showed quenching in the intensity of the signal at 688?nm for Zn2+. The complex composition of ZnPc was found 1:1 by means of spectrophotometric and spectrofluorimetric titration data. The spectrofluorimetric method showed good sensitivity for Zn2+ with linear range and detection limit of 4.0?×?10?6–4.4?×?10?5 and 2.4×10?7?M, respectively.  相似文献   

13.
For efficient antibacterial photodynamic therapy for wounds, information on the distribution of a photosensitizer in tissue is important, but conventional fluorescence measurement does not provide depth-resolved information. We previously proposed in vivo photoacoustic (PA) depth profiling of a photosensitizer, but the contrast of PA signals was not sufficiently high, mainly due to light absorption by blood in tissue. In this study, we performed dual-wavelength PA measurement; green light and red light were used to excite blood and photosensitzer, respectively, and the former signal was subtracted from the latter signal to compensate a blood-associated component. Methylene blue or porfimer sodium solution was injected into subcutaneous tissue in rats with deep dermal burn and two-dimensional PA measurement was performed. The signal subtraction diminished not only the signal originating from blood but also the signal originating from the stratum corneum and acoustic reflection noise, creating a high-contrast PA image. The distribution of PA signals was confirmed to coincide well with the distribution of photosensitizer-originating fluorescence measured for tissue biopsied after the PA measurement, demonstrating the validity of this method for in vivo photosensitizer dosimetry. On the basis of this method, temporal behaviors of two photosensitizers were compared.  相似文献   

14.
The mass and heat transfer dynamics of evaporating multicomponent alcohol/water droplets have been probed experimentally by examining changes in the near surface droplet composition and average droplet temperature using cavity-enhanced Raman scattering (CERS) and laser-induced fluorescence (LIF). The CERS technique provides a sensitive measure of the concentration of the volatile alcohol component in the outer shell of the droplet, due to the exponential relationship between CERS intensity and species concentration. Such volatile droplets, which are probed on a millisecond time scale, evaporate nonisothermally, resulting in both temperature and concentration gradients, as confirmed by comparisons between experimental measurements and quasi-steady state model calculations. An excellent agreement between the experimental evaporation trends and quasi-steady state model predictions is observed. An unexpectedly slow evaporation rate is observed for the evaporation of 1-propanol from a multicomponent droplet when compared to the model; possible explanations for this observation are discussed. In addition, the propagation depth of the CERS signal, and, therefore, the region of the droplet from which compositional measurements are made, can be estimated. Such measurements, when considered in conjunction with quasi-steady state theory, can allow droplet temperature gradients to be measured and vapor pressures and activity coefficients of components within the droplet to be determined.  相似文献   

15.
Abstract— Following the method of Johnson and Rajagopalan (1982) for obtaining Form B of molybdopterin cofactors, we observed a prominent fluorescence band at480–482 nm in purified NR of Neurospora crassa mutant albino-band after boiling the enzyme at acidic pH and readjusting the sample to alkaline pH. This fluorescence band is maximally excited at 410 nm and maximally emitting at pH 11 (“F-480pH11”); at pH4–7 only a featureless fluorescence band of low intensity remains (“F-480pH5”). The fluorescence ΔF-480 = F-480pH11 - F-480pHS is examined here. ΔF-480 is associated specifically with NADPH-dependent and MVH-dependent nitrate reduction activities and with cytochrome b-557 absorption. In a protease-digested preparation lacking NADPH-dependent NR activity, ΔF-480 is associated with MVH-dependent nitrate reduction. The ΔF-480 signal is followed during the course of purification of NR. Its size increases with increasing purity of the enzyme. In partially purified NR preparations and especially in aqueous extracts from mycelia of N. crassa, a second, strong fluorescence signal with a pH-dependent emission maximum at around 450 nm (maximally excited at350–370 nm) was found beside ΔF-480. This “unspecific” signal was lost during NR purification. A procedure is developed to demonstrate AF-480 also in presence of the unspecific (350-370/450 nm) signal as well as flavins. We deduce that the ΔF-480 component is part of the Mo cofactor of N. crassa NR and that the signal is caused by a pterin derivative. From calculations of total content of the AF-480 component in mycelia it is likely that in vivo it is shared also by other enzymes.  相似文献   

16.
Laser induced fluorescence spectroscopy of free-base (H(2)Pc) and zinc (ZnPc) phthalocyanines trapped in rare gas and nitrogen matrices reveals a quite unexpected phenomenon with a moderate increase in the laser intensity. In all matrices except Xe, a huge increase occurs in the intensity of an emission band near 755 nm when pumping the S(1) <-- S(0) transition. The band involves a vibrational mode of the ground state, located at 1550 and 1525 cm(-1) for H(2)Pc and ZnPc, respectively. Many of the characteristics of amplified emission (AE) are exhibited by this vibronic transition. Excitation scans recorded for the AE band yield greatly enhanced site selectivity compared to what is obtained in normal fluorescence excitation scans.  相似文献   

17.
A new family of light‐harvesting zinc phthalocyanine (ZnPc)–diketopyrrolopyrrole (DPP) hybrids have been synthesized and characterized. The absorption spectral measurements showed that the major absorptions of DPP (450–600 nm) are complementary to those of zinc phthalocyanine (300–400 and 600–700 nm). Therefore, the designed hybrids absorb over a broad range in the visible region. The geometric and electronic structures of the dyads were probed by initio B3LYP/6‐311G methods. The majority of the HOMOs were found to be located on the ZnPc, while the majority of the LUMOs were on the DPP units. The DPP units serve as the antenna, which upon excitation undergo efficient singlet–singlet energy transfer to the attached ZnPc units. The formed singlet ZnPc, in turn, donates its electron to the electron‐deficient DPP forming the low‐lying radical ion pairs ZnPc.+–DPP.? (energy=1.44–1.56 eV as calculated from the electrochemical measurements). The excited‐state events were confirmed by using a transient absorption technique in the picosecond–microsecond time range, as well as a time‐resolved emission technique. The rates of energy transfer from the singlet DPP to ZnPc were found to be extremely fast >1010 s?1, while the rates of electron transfer from the singlet excited state of ZnPc to DPP were found to be 3.7–6.6×109 s?1.  相似文献   

18.
The temperature study of zinc phthalocyanine (ZnPc) thin layers deposited on (0 0 1) Si substrate using Raman, FT-IR absorption and photoluminescence (PL) methods are reported. The Raman scattering spectra of ZnPc layers were investigated in the spectral range 1250–1650 cm−1 and in the temperature range 100–500 K. The changes of spectral parameters such as the band position, integrated intensity and full width at half maximum (FWHM) of selected Raman modes while heating and cooling processes have been determined. The fast decrease of the frequency and the intensity of these modes observed with the increase of the temperature above 420 K, can be probably caused by the change of crystalline form of ZnPc thin layer. The FT-IR measurements have been performed in the temperature range 98–523 K. Our study allowed us to estimate the orientation of the molecular plane similar to these of CuPc thin films deposited on Si substrate. The Raman spectra have been compared with FT-IR spectra of ZnPc molecules in KBr pellets and thin layers of ZnPc on (0 0 1) Si substrate. The PL spectra of ZnPc layers were measured in the spectral range 350–1200 nm and in the temperature range 13–320 K. With increasing temperature from 13 to 175 K we observed the increase of PL bands at 1.76 and 1.85 eV which disappear reaching temperature above 200 K.  相似文献   

19.
Zinc(II) phthalocyanine (ZnPc), a potential second-generation phototherapeutic agent for tumours, has been incorporated into small unilamellar vesicles (SUVs) (diameter, 52 nm) and large unilamellar vesicles (LUVs) (diameter, 84 nm) of dipalmitoyl-phosphatidylcholine (DPPC). Absorption spectroscopy, as well as steady state and time-resolved fluorescence emission studies, indicate that ZnPc is monomeric in SUVs at a stoichiometric concentration below 0.25 microM (corresponding to an actual endoliposomal concentration of about 0.5 mM), while in LUVs it is monomeric below 2 microM. The fluorescence lifetime of the monomer is 3-3.5 ns. Upon increasing the ZnPc concentration, aggregated derivatives are formed, which are characterized by shorter fluorescence lifetimes (1.2-1.5 ns; 0.4-0.6 ns). The possible implications of these observations for the phototherapeutic efficiency of ZnPc are briefly discussed.  相似文献   

20.
A supramolecular nanovehicle (denoted as SNV) was fabricated by encapsulating zinc phthalocyanine (ZnPc) and doxorubicin (DOX) into a copolymer (PVP-b-PAA-g-FA), so as to achieve systematic and synergistic chemotherapy-photodynamic therapy (PDT), targeted tumor imaging and therapy. The sophisticated copolymer designed in this work can load the PDT photosensitizer (ZnPc) and chemotherapy drug (DOX) simultaneously, which exhibits an excellent performance in chemotherapy-PDT targeted cancer and tumor therapy for both in vitro studies performed with HepG2 cells and in vivo tests with mice. This work provides a new drug formulation with a chemotherapy-PDT synergistic effect by virtue of the supramolecular material design, which possesses the advantages of an ultra-low drug dosage and highly-efficient in vivo targeted tumor imaging/therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号