首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethylene terephthalate (PET) films were irradiated with 3 MeV proton beams at different fluences. The microhardness, electrical, thermal and structural studies were carried out using microhardness tester, LCR meter, thermogravimetric analysis (TGA) and FTIR spectroscopy. Vickers' hardness has been observed to increase with the fluence. The true bulk hardness of the film was obtained at loads greater than 400 mN. The AC electrical conductivity is practically unaffected by irradiation up to a frequency of 10 kHz, but it is found to increase exponentially at a frequency of 300 kHz. The loss factor and dielectric constant are observed to change appreciably with the fluence. It is observed that there is no significant change in the stability of the polymer up to the fluence of 1014 ions cm?2 as revealed by TGA and FTIR spectroscopy.  相似文献   

2.
A. K. Nath  A. Kumar 《Ionics》2014,20(12):1711-1721
Swift heavy ion (SHI) irradiation has been used as a tool to enhance the electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes dispersed with dedoped polyaniline (PAni) nanorods; 100 MeV Si9+ ions with four different fluences of 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions cm?2 have been used as SHI. XRD results depict that with increasing ion fluence, crystallinity decreases due to chain scission up to fluence of 5?×?1011 ions cm?2, and at higher fluence, crystallinity increases due to cross-linking of polymer chains. Ionic conductivity, electrochemical stability, and dielectric properties are enhanced with increasing ion fluence attaining maximum value at the fluence of 5?×?1011 ions cm?2 and subsequently decrease. Optimum ionic conductivity of 1.5?×?10?2 S cm?1 and electrochemical stability up to 6.3 V have been obtained at the fluence of 5?×?1011 ions cm?2. Ac conductivity studies show that ion conduction takes place through hopping of ions from one coordination site to the other. On SHI irradiation, amorphicity of the polymer matrix increases resulting in increased segmental motion which facilitates ion hopping leading to an increase in ionic conductivity. Thermogravimetric analysis (TGA) measurements show that SHI-irradiated nanocomposite polymer electrolytes are thermally stable up to 240–260 °C.  相似文献   

3.
Polyethylene terephthalate (PET) films of 50?μm thickness were exposed to swift-heavy 50?MeV copper and 84?MeV oxygen ions, with fluence varying from 1?×?1011 to 1?×?1013 ions cm?2. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) and UV-visible spectroscopic techniques were used to characterize the irradiated samples. The XRD and DSC analysis indicated the loss of crystallinity during/after the irradiation. The FTIR spectra revealed the formation of alkyne end groups, C═C groups and structural deformation with increase of ion fluence. Considerable reduction in the value of the optical bandgap was inferred from the study of the UV-visible absorption curves.  相似文献   

4.
Makrofol-N polycarbonate was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced effects with respect to optical and structural properties. In the present investigation, the fluence for carbon and copper beams was kept in the range of 1×1011– 1×1013 ions/cm2 to study the swift heavy ion induced modifications. UV–VIS, FTIR and XRD techniques were utilized to study the induced changes. The analysis of UV–VIS absorption studies revealed that the optical energy gap was reduced by 17% on carbon irradiation, whereas the copper beam leads to a decrease of 52% at the highest fluence of 1×1013 ions/cm2. The band gap can be correlated to the number of carbon atoms, N, in a cluster with a modified Robertson's equation. In copper (120 MeV) ions irradiated polycarbonate, the number of carbon atoms in a cluster was increased from 63 to 269 with the increase of ion fluence from 0 to 1×1013 ions/cm2, whereas N is raised only up to 91 when the same polymer films were irradiated with carbon (70 MeV) ions under similar conditions. FTIR analysis showed a decrease in almost all characteristic absorption bands under irradiation. The formation of hydroxyl (? OH) and alkene (C?C) groups were observed in Makrofol-N at higher fluence on irradiation with both types of ions, while the formation alkyne end (R? C≡ CH) group was observed only after copper ions irradiation. The radii of the alkyne production of about 3.3 nm were deduced for copper (120 MeV) ions. XRD measurements show a decrease in intensity of the main peak and an increase of the average intermolecular spacing with the increase of ion fluence, which may be attributed to the structural degradation of Makrofol-N on swift ion irradiation.  相似文献   

5.
Polycarbonate/polystyrene bilayer films prepared by solvent-casting method were irradiated with 55 MeV carbon ion beam at different fluences ranging from 1×1011 to 1×1013 ions cm?2. The structural, optical, surface morphology and dielectric properties of these films were investigated by X-ray diffraction (XRD), UV–visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, optical microscopy and dielectric measurements. The XRD pattern shows that the percentage of crystallinity decreases while inter-chain separations increase with ion fluence. UV–visible spectroscopy shows that the energy band gap decreases and the number of carbon atoms in nanoclusters increase with the increase in ion fluences. The refractive index is also found to decrease with the increase in the ion fluence. Optical microscopy shows that after irradiation polymeric bilayer films color changes with ion fluences. The FTIR spectra evidenced a very small change in cross-linking and chain scissoring at high fluence. Dielectric constant decreases while dielectric loss and AC conductivity increase with ion fluences.  相似文献   

6.
Samples from polycarbonate/poly (butylene terephthalate) (PC/PBT) blends film have been irradiated using different fluences (1?×?1015– 5?×?1017 H+/cm2) of 1?MeV protons at the University of Surrey Ion Beam Center, UK. The structural modi?cations in the proton irradiated samples have been studied as a function of fluence using different characterization techniques such as X-ray diffraction and UV spectroscopy. The results indicate that the proton irradiation reduces the optical energy gap that could be attributed to the increase in structural disorder of the irradiated samples due to crosslinking. Furthermore, the color intensity ΔE, which is the color difference between the non-irradiated sample and those irradiated with different proton fluences, increased with increasing the proton fluence up to 5?×?1017 H+/cm2, convoyed by an increase in the red and yellow color components. In addition, the resultant effect of proton irradiation on the thermal properties of the PC/PBT samples has been investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). It is found that the PC/PBT decomposes in one weight loss stage. Also, the variation of transition temperatures with proton fluence has been determined using DSC. The PC/PBT thermograms were characterized by the appearance of two endothermic peaks due to the glass transition and melting temperatures. The melting temperature of the polymer, Tm, was investigated to probe the crystalline domains of the polymer, since the proton irradiation destroys the crystalline structure so reducing the melting temperature.  相似文献   

7.
Abstract

The structural and optical effects of copper (50?MeV) and carbon (70?MeV) ion irradiation of low density polyethylene (LDPE) are described. X-ray diffraction (XRD) and differential scanning calorimetric (DSC) techniques were used to explore the structural behavior, while Fourier transform infrared (FTIR) and UV-visible spectroscopies were used to collect the optical data. Structural parameters, such as interplanar separation, distortion factor, crystallite size and degree of crystallinity, were measured to understand the change in the structural behavior of LDPE caused by the swift heavy ion irradiation. In the irradiated polymeric samples, the formation and growth of new carbon enriched species were revealed by the FTIR and UV-visible analysis, which led to the decrease of their optical bandgap energy with the increase of ion fluence.  相似文献   

8.
Swift heavy ions interact predominantly through inelastic scattering while traversing any polymer medium and produce excited/ionized atoms. Here samples of the polycarbonate Makrofol of approximate thickness 20 μm, spin coated on GaAs substrate were irradiated with 50 MeV Li ion (+3 charge state). Build-in modifications due to irradiation were studied using FTIR and XRD characterizations. Considerable changes have been observed in the polymer while varying the fluence from 1E11 ion/cm2 to 1E13 ion/cm2 Li ions. AFM images of the surface modifications caused by ion irradiation on the polymer are also presented.   相似文献   

9.
The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1×1015 cm?2. Electrical properties of LDPE films were measured and the effect of ion bombardment on the DC conductivity, dielectric constant and loss was studied. Optically, the energy gap, the Urbach’s energy and the number of carbon atoms in a cluster were estimated for all polymer samples using the UV–Vis spectrophotometry technique. The obtained results showed slight enhancement in the conductivity and dielectric parameters due to the increase in ion fluence. Meanwhile, the energy gap and the Urbach’s energy values showed significant decrease by increasing the Ar ion fluence. It was found that the ion bombardment induced chain scission in the polymer chain causing some carbonization. An increase in the number of carbon atoms per cluster was also observed.  相似文献   

10.
The green revolution has led to the study of biopolymer for development of polymer electrolyte for electrochemical devices. Cellulose acetate, pectin, chitosan, and carrageenan are some of the biopolymers. Biopolymer-based membrane for proton conduction and lithium ion conduction have developed and characterized by different techniques. But the study of biopolymer based on Mg2+ ion is rare in literature. So, biopolymer based on I-carrageenan with magnesium has been studied. I-carrageenan biopolymer membrane with different concentration of magnesium perchlorate has been prepared by solution casting technique. Developed biopolymer membrane have been characterized by X-ray diffraction analysis (XRD), FTIR, differential scanning calorimetry (DSC), and AC impedance techniques. Pure I-carrageenan has shown a conductivity value of 5.90?×?10?5 S/cm. I-carrageenan membrane with 0.6 wt% of magnesium perchlorate has shown a conductivity of 2.18?×?10?3 S/cm. A primary Mg2+ ion battery has been constructed and its performance is studied. XRD has been undertaken to study the amorphous/crystalline nature of the sample. I-carrageenan with 0.6 wt% of magnesium membrane has shown highest amorphous nature. FTIR study confirms the complex formation between polymer and salt. AC impedance technique has been used to study the conductivity of the samples.  相似文献   

11.
《Solid State Ionics》2006,177(26-32):2575-2579
Swift heavy ion irradiation of P(VDF–HFP)–(PC + DEC)–LiClO4 gel polymer electrolyte system with 48 MeV Li3+ ions having five different fluences was investigated with a view to increase the Li+ ion diffusivity in the electrolyte. Irradiation with swift heavy ion (SHI) shows enhancement of conductivity at lower fluences and decrease in conductivity at higher fluences with respect to unirradiated polymer electrolyte films. Maximum room temperature (303 K) ionic conductivity is found to be 2.2 × 10 2 S/cm after irradiation with fluence of 1011 ions/cm2. This interesting result could be ascribed to the fluence-dependent change in porosity and to the fact that for a particular ion beam with a given energy higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in the decrease in ionic conductivity. The XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤ 1011 ions/cm2) and increase in crystallinity at high fluences (> 1011 ions/cm2). The scanning electron micrographs (SEM) exhibit increased porosity of the polymer electrolyte films after low fluence ion irradiation.  相似文献   

12.
Conducting polymer composites of polypyrrole (PPy) and silver doped nickel oxide (Ag-NiO) nanocomposites were synthesised by in situ polymerisation of pyrrole with different contents of Ag-NiO nanoparticles. The formation of nanocomposites were studied by Fourier transform infrared (FTIR) and UV–vis spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and AC and DC conductivity measurements. The sensitivity of ammonia gas through the nanocomposite was analysed with respect to different contents of nanoparticles. Spectroscopic studies showed the shift in the absorption bands of polymer nanocomposite than that of pure PPy indicating the strong interaction between the nanoparticles and polymer chain. FESEM revealed the uniform dispersion of nanoparticles with spherically shaped metal oxide particles in PPy matrix. The XRD pattern indicated a decrease in amorphous domain of PPy with increase in loading of nanoparticles. The higher thermal stability and glass transition temperature of polymer nanocomposites than that of pure PPy were revealed from the TGA and DSC respectively. The dielectric properties, DC and AC conductivity of nanocomposites were much higher than PPy and these electrical properties increases with the loading of nanoparticles. The nanocomposites showed an enhancement in sensitivity towards ammonia gas detection than PPy.  相似文献   

13.
High-energy ion beam irradiation of the polymers is a good technique to modify the properties such as electrical conductivity, structural behaviour and mechanial properties. Polyaniline thin films doped with hydrochloric acid (HCl) were prepared by oxidation of ammonium persulphate. The effect of Swift Heavy Ions irradiation on the electrical and structural properties of polyaniline has been measured in this study. Polyaniline films were irradiated by oxygen ions (energy 80 MeV, charge state O+7) with fluence varying from 1 × 1010 to 3 × 1012 ions/cm2. The studies on electrical and structural properties of the irradiated polymers were investigated by measuring V-I using four probe set-up and X-ray diffraction (XRD) using Bruker AXS, X-ray powder diffractometer. V-I measurements shows an increase in the conductivity of the film, XRD pattern of the polymer shows that the crystallinity improved after the irradiation with Swift Heavy Ions (SHI), which could be attributed to cross linking mechanism.   相似文献   

14.
Blending of polymers is one of the most useful methods for modulating the conductivity of solid polymer electrolytes. Blend polymer electrolytes have been prepared with polyvinyl alcohol (PVA)-polyacrylonitrile (PAN) blend doped with ammonium thiocyanate with different concentrations by solution casting technique, using dimethyl formamide (DMF) as the solvent. The prepared electrolytes are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), ultraviolet (UV), and ac impedance measurement techniques. The increase in amorphous nature of the blend polymer electrolyte by the addition of salt is confirmed by XRD analysis. The complex formation between the polymers and the salt has been confirmed by FTIR analysis. The thermal behavior has been examined using DSC and TGA. The maximum conductivity has been found to be 2.4?×?10?3 S cm?1 for 92.5PVA/7.5PAN/25 % NH4SCN sample at room temperature. The temperature dependence of conductivity has been studied with the help of Arrhenius plot, and the activation energies are calculated. The proton conductivity is confirmed by dc polarization measurement technique. 1H NMR studies reveal the presence of protons in the sample. A proton battery is constructed with the highest conducting sample, and its open circuit voltage is measured to be 1.2 V  相似文献   

15.
The development of magnesium electrolytes for battery applications has been the demand for electrochemical devices. To meet such demand, in this work solid blend polymer electrolytes were prepared using polyvinyl alcohol (PVA) and polyacrylonitrile (PAN) (92.5PVA:7.5PAN) as host polymer, magnesium chloride (MgCl2) of different molar mass percentage (m.m.%) (0.1, 0.2, 0.3, 0.4, 0.5, and 0.6%) as salt and dimethylformamide (DMF) as solvent. Structural, vibrational, thermal, electrical, and electrochemical properties of the prepared electrolytes were investigated using different techniques such as X-ray diffraction pattern, FTIR spectroscopy analysis, differential scanning calorimetry (DSC), AC impedance measurement, and transference number measurement. X-ray diffraction studies confirm the minimum volume fraction of crystalline phase for the polymer electrolyte with 0.5 m.m.% of MgCl2. FTIR confirms the complex formation between host polymer and salt. DSC analysis proves the thermal transition of the prepared films are affected by salt concentration. The optimized material with 0.5 m.m.% of MgCl2 offers a maximum electrical conductivity of 1.01 × 10?3 S cm?1 at room temperature. The Mg2+ ion conduction in the blend polymer electrolyte is confirmed from transference number measurement. Electrochemical analysis demonstrates the promising characteristic of these polymer films suitable as electrolytes for primary magnesium batteries. Output potential and discharge characteristics have been analyzed for primary magnesium battery which is constructed using optimized conducting electrolyte.  相似文献   

16.
Photoluminescent, structural and thermal changes induced in polyvinylidenechloride (PVDC) films by irradiation with energetic silicon and oxygen ions have been determined using different techniques viz PL, FTIR, UV-vis, XRD, TGA and AFM. Noticeable photoluminescence was observed in PVDC after irradiation with 84 MeV oxygen ions at fluence 3.2×1011 ions cm−2, which is attributed to the small carbon cluster formed in the polymer due to irradiation. Quenching and shifting in the position of the PL band towards the longer wavelength side of the spectrum was observed with the increase in ion fluence. UV-vis and FTIR analysis have strongly corroborated the results of PL spectroscopy. X-ray diffractograms and TGA curves show decrease in crystallinity and weight loss, respectively, of PVDC films after irradiation. The strong correlation between the behaviors of different properties were analyzed and discussed in the present paper.  相似文献   

17.
Poly(m-toluidine) (PmT), a derivative of polyaniline, has been prepared by chemical oxidation polymerization method. The synthesized PmT powder is blended with plasticized polyvinyl chloride (PVC) to achieve 20 μm thick self-supported films. These films were irradiated with 60 MeV Si5+ ions at three different fluences whose S e (electronic energy loss) value is found to be 1.988×103 KeV/μ m, an order of magnitude larger than 60 MeV C5+ (2.958×102 KeV/μ m). Fourier transform infrared (FTIR), X-ray diffraction (XRD) and ultraviolet-visible (UV) absorption studies of pre- and post-irradiated films of PmT–PVC blends were carried out to study the heavy ion irradiation effects on these polymer blends. An overall change in the structure of the polymer blend has been observed from FTIR studies. UV-visible spectra show a decrease in the optical band gap (E g) and an increase in cluster size with increasing fluence. An effort is made to compare these results with our earlier studies. We found that the variation in S e plays an important role in the structural and optical properties of PmT–PVC blends.  相似文献   

18.
Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7?×?10?3 S cm?1 at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48?×?10?7 S cm?1. The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.  相似文献   

19.
The effects of ion-beam bombardment on the physical and chemical properties of poly(allyl diglycol carbonate) (CR-39) polymer have been investigated. CR-39 samples were bombarded with 320 keV Ar and 130 keV He ions at fluences ranging from 1 × 1013 to 2 × 1016 ions/cm2. The nature and extent of radiation damage induced were studied by UV–VIS spectrometry, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, as well as Vickers' hardness measurements. In addition, the effect of ion fluence on the wetting properties of ion-beam bombarded CR-39 polymer was determined by measuring the contact angle for distilled water. UV–VIS spectra of bombarded samples reveal that the optical band gap decreases with increasing ion fluence for both Ar and He ions. In the FTIR spectra, changes in the intensity of the bands on irradiation relative to pristine samples occurred with the appearance of new bands. XRD analyses showed that the degree of ordering of the CR-39 polymer is dependent on the ion fluence. Changes of surface layer composition and an increase in the number of carbonaceous clusters produced important change in the energy gap and the surface wettability. The surface hardness increased from 10.54 MPa for pristine samples to 28.98 and 23.35 MPa for samples bombarded with Ar and He ions at the highest fluence, respectively.  相似文献   

20.
ABSTRACT

Polycarbonate (PC) and polyethylene terephthalate (PET) thermoplastic polymer films were irradiated by low energy ion beams such as 100 keV Hydrogen (H+) ions and 350 keV Nitrogen (N+) ions at varied fluence from 1?×?1013 ions/cm2 to 5?×?1014 ions/cm2. The depth profile concentration of ions was calculated using Stopping and Range of Ions in Matter (SRIM) software code. Fourier Transform Infrared (FTIR) technique shows decrement in the intensity of peaks and disappearance of peaks mainly related to carbonyl stretching at 1770?cm?1 and C–C stretching at 1500?cm?1. Scanning electron microscopy (SEM) of irradiated polymers showed the formation of pores. X-ray diffraction (XRD) analysis has showed decrease in the intensity indicating the decrease in crystallinity after irradiation. Mechanical studies revealed that the molecular weight and microhardness decrease with increase in ion fluence due to increase in chain scission. The contact angle increased with increase in ion fluence indicating the hydrophobic nature of polymer after irradiation. Antibiofilm activity test of irradiated films shows resistance to Salmonella typhi (S. typhi) pathogen responsible for typhoid. The study shows that Nitrogen ion induces more damage compared to Hydrogen ions and PC films get more modified than PET films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号