首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider Kerr-Gödel black hole and study thermodynamics and statistics. We analyze some important quantities such as free energy, specific heat, and partition function numerically. We compare thermodynamics entropy with statistics entropy and find agreement between them.  相似文献   

2.
In this paper, we discuss the thermodynamical analysis for gravitationally induced particle creation scenario in the framework of DGP braneworld model. For this purpose, we consider apparent horizon as the boundary of the universe. We take three types of entropy such as Bakenstein entropy, logarithmic corrected entropy and power law corrected entropy with ordinary creation rate \(\Gamma \). We analyze the first law and generalized second law of thermodynamics analytically for these entropies which hold under some constraints. The behavior of total entropy in each case is also discussed which implies the validity of generalized second law of thermodynamics. Also, we check the thermodynamical equilibrium condition for two phases of creation rate, that is constant and variable \(\Gamma \) and found its vitality in all cases of entropy.  相似文献   

3.
We analyze the effects of thermal fluctuations on a regular black hole (RBH) of the non-minimal Einstein–Yang–Mill theory with gauge field of magnetic Wu–Yang type and a cosmological constant. We consider the logarithmic corrected entropy in order to analyze the thermal fluctuations corresponding to non-minimal RBH thermodynamics. In this scenario, we develop various important thermodynamical quantities, such as entropy, pressure, specific heats, Gibb’s free energy and Helmholtz free energy. We investigate the first law of thermodynamics in the presence of logarithmic corrected entropy and non-minimal RBH. We also discuss the stability of this RBH using various frameworks such as the \(\gamma \) factor (the ratio of heat capacities), phase transition, grand canonical ensemble and canonical ensemble. It is observed that the non-minimal RBH becomes globally and locally more stable if we increase the value of the cosmological constant.  相似文献   

4.
In this paper we consider STU black hole and calculate statistical quantities. We analyze some important quantities such as free energy, specific heat, and partition function numerically. We compare thermodynamics entropy with statistics entropy and find agreement between them.  相似文献   

5.
The classical second law of thermodynamics demands that an isolated system evolves with a nondiminishing entropy. This holds as well in quantum mechanics if the evolution of the energy-isolated system can be described by a unital quantum channel. At the same time, the entropy of a system evolving via a nonunital channel can, in principle, decrease. Here, we analyze the behavior of entropy in the context of the H-theorem. As exemplary phenomena, we discuss the action of a Maxwell demon (MD) operating a qubit and the processes of heating and cooling in a two-qubit system. Further we discuss how small initial correlations between a quantum system and a reservoir affect the entropy increase during the quantum-system evolution.  相似文献   

6.
This paper is devoted to studying the impact of thermal fluctuations on thermodynamics of rotating as well as charged anti-de Sitter black holes with the Newman–Unti–Tamburino(NUT)parameter. To this end, we derive the analytic expression of thermodynamic variables, namely the Hawking temperature, volume, angular velocity, and entropy within the limits of extended phase space. These variables meet the first law of thermodynamics as well as the Smarr relation in the presence of new NUT charge. To analyze the effects of quantum fluctuations, we derive the exact expression of corrected entropy, which yields modification in other thermodynamical equations of state. The local stability and phase transition of the considered black hole are also examined through specific heat. It is found that the NUT parameter increases the stability of small black holes, while the logarithmic corrections induce instability in the system.  相似文献   

7.
We analyze the thermodynamics of systems which have entropy functions of the type S(m) = am + b, where m is an extensive variable and a, b, and are constants. Such functions apply to dilatonic black holes whose mass is m. This analysis continues our earlier treatment of the general classification of the thermodynamics of systems by whether they exhibit entropy functions which may or may not be either superadditive, homogeneous or concave in the extensive variables on which the entropy depends. This leads to a classification into 8 types of thermodynamics (with several subtypes). We show that only five of these are available for systems having the entropy given above, and these are in fact realized if the constants are given appropriate values.  相似文献   

8.
In this work, we have considered the Vaidya spacetime in null radiating fluid with perfect fluid in higher dimension and have found the solution for barotropic fluid. We have shown that the Einstein’s field equations can be obtained from Unified first law i.e., field equations and unified first law are equivalent. The first law of thermodynamics has also been constructed by Unified first law. From this, the variation of entropy function has been derived on the horizon. The variation of entropy function inside the horizon has been derived using Gibb’s law of thermodynamics. So the total variation of entropy function has been constructed at apparent and event horizons both. If we do not assume the first law, then the entropy on the both horizons can be considered by area law and the variation of total entropy has been found at both the horizons. Also the validity of generalized second law (GSL) of thermodynamics has been examined at both apparent and event horizons by using the first law and the area law separately. When we use first law of thermodynamics and Bekenstein-Hawking area law of thermodynamics, the GSL for apparent horizon in any dimensions are satisfied, but the GSL for event horizon can not be satisfied in any dimensions.  相似文献   

9.
During the past three decades investigators have unveiled a number of deep connections between physical information and black holes whose consequences for ordinary systems go beyond what has been deduced purely from the axioms of information theory. After a self-contained introduction to black hole thermodynamics, we review from its vantage point topics such as the information conundrum that emerges from the ability of incipient black holes to radiate, the various entropy bounds for non-black hole systems (holographic bound, universal entropy bound, etc.) which are most easily derived from black hole thermodynamics, Bousso's covariant entropy bound, the holographic principle of particle physics, and the subject of channel capacity of quantum communication channels.  相似文献   

10.
In this paper we consider Myers-Perry black holes and study thermodynamics and statistics under logarithmic correction of the entropy. We calculate effect of logarithmic correction of thermodynamics quantities such as entropy. We study thermodynamics stability of the model by using the specific heat. We claim that the correction term removes some instabilities and matches statistical entropy with BH entropy.  相似文献   

11.
With the usual definitions for the entropy and the temperature associated with the apparent horizon, we discuss the first law of the thermodynamics on the apparent in the general scalar-tensor theory of gravity with the kinetic term of the scalar field non-minimally coupling to Einstein tensor. We show the equivalence between the first law of thermodynamics on the apparent horizon and Friedmann equation for the general models, by using a mass-like function which is equal to the Misner-Sharp mass on the apparent horizon. The results further support the universal relationship between the first law of thermodynamics and Friedmann equation.  相似文献   

12.
Zhenxiong Nie 《中国物理 B》2022,31(5):50401-050401
The thermodynamics of Bardeen black hole surrounded by perfect fluid dark matter is investigated. We calculate the analytical expresses of corresponding thermodynamic variables, e.g., the Hawking temperature, entropy of the black hole. In addition, we derive the heat capacity to analyze the thermal stability of the black hole. We also compute the rate of emission in terms of photons through tunneling. By numerical method, an obvious phase transition behavior is found. Furthermore, according to the general uncertainty principle, we study the quantum corrections to these thermodynamic quantities and obtain the quantum-corrected entropy containing the logarithmic term. Lastly, we investigate the effects of the magnetic charge g, the dark matter parameter k and the generalized uncertainty principle parameter α on the thermodynamics of Bardeen black hole surrounded by perfect fluid dark matter under general uncertainty principle.  相似文献   

13.
We consider the generalized second law of black hole thermodynamics in the light of quantum information theory, in particular information erasure and Landauer’s principle (namely, that erasure of information produces at least the equivalent amount of entropy). A small quantum system outside a black hole in the Hartle-Hawking state is studied, and the quantum system comes into thermal equilibrium with the radiation surrounding the black hole. For this scenario, we present a simple proof of the generalized second law based on quantum relative entropy. We then analyze the corresponding information erasure process, and confirm our proof of the generalized second law by applying Landauer’s principle.  相似文献   

14.
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.  相似文献   

15.
We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner–Norström (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge Q in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS2 thermodynamics of the MCRBH with the connection of the Jackiw–Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS2/CFT1 correspondence.  相似文献   

16.
傅里叶导热定律导出的温度演化方程将得出无限大的热扰动传播速率。为了克服这个问题,一些修正导热模型被提出,可以得到双曲型温度方程,保证有限的热波传播速率。但是,新的传热模型得出的温度演化将使现有的不可逆热力学中熵产不能保持正定。拓展不可逆热力学通过修正熵以及熵产的表达式,使双曲导热也能得到正定的熵产率。热质理论用力学的概...  相似文献   

17.
Hao Yu  Yu-Xiao Liu  Jin Li 《中国物理C(英文版)》2023,47(5):055105-055105-20
In this study, we investigate the entropies of photons, ideal gas-like dust (baryonic matter), and a special kind of dark energy in the context of cosmology. When these components expand freely with the universe, we calculate the entropy and specific entropy of each component from the perspective of statistics. Under specific assumptions and conditions, the entropies of these components can satisfy the second law of thermodynamics independently. Our calculations show that the specific entropy of matter cannot be a constant during the expansion of the universe, except for photons. When these components interact with the space-time background, particle production (annihilation) can occur. We study the influence of the interaction on the entropies of these components and obtain the conditions guaranteeing that the entropy of each component satisfies the second law of thermodynamics.  相似文献   

18.
《Physica A》1987,144(1):211-218
From a generalized Gibbs equation and a general form for entropy flux, we develop a non-linear theory for the thermodynamics of several rheological bodies, known as Kelvin bodies. In accordance with irreversible extended thermodynamics, we deduce a non-stationary transport equation which contains new cross effect terms; in so doing, we obtain a complete hyperbolic system which describes the evolution of the above bodies.  相似文献   

19.
20.
A statistical-mechanical formalism for nonequilibrium systems, namely the nonequilibrium statistical operator method, provides microscopic foundations for a generalized thermodynamics of dissipative processes. This formalism is based on a unifying variational approach that is considered to be encompassed in Jaynes' Predictive Statistical Mechanics and principle of maximization of the statistical-informational entropy. Within the framework of the statistical thermodynamics that follows from the method, we demonstrate the existence of generalized forms of the theorem of minimum (informational) entropy production, the criterion for evolution, and the thermodynamic (in)stability criterion. The formalism is not restricted to local equilibrium but, in principle, to general conditions (its complete domain of validity is not yet fully determined). A H-theorem associated to the formalism is presented in the form of an increase of the informational entropy along the evolution of the system. Some of the results are illustrated in an application to the study of a model for a photoexcited direct-gap semiconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号