首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: A modified poly (vinylidene fluoride) (PVDF) hollow fiber membrane with higher flux and flux recovery rate was prepared by γ-radiation induced grafting of acrylic acid (AA). The influence of radiation dose and monomer concentration on the grafting degree was investigated. The results indicated that the grafting degree increased in the lower monomer volume fraction until the monomer volume fraction exceeded 20%. The grafting degree increased with the increase of radiation dose. Structural and morphological of the original and grafted membrane surface were characterized by FT-IR, scanning electron microscopy (SEM). The results indicated that acrylic acid was grafted onto PVDF hollow fiber membrane and the grafted membrane was more hydrophilic than original PVDF. There was a slight increase of breaking strength and yield stress with the increase of the grafting degree of AA. The pure water flux increased initially but decreased subsequently with the raise of grafting degree. When the grafting degree was 4.4%, the maximum pure water flux reached 1496.3 L/m2 × h, 1.79 times of original membrane. The pure water flux, flux recovery rate and rejection ratio for bovine serum albumin could improve simultaneously in a low grafting degree (<4.4%).  相似文献   

2.
The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4- hydroxyphenyl) maleimide)(SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate(PEGMA) side groups was achieved by atom transfer radical polymerization(ATRP).The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).From thermogravimetric analysis (TGA),the decomposition temperature of SHMI-g-PEGMA is low...  相似文献   

3.
Chitosan (CS) with good hydrophilicity and charged property was used to modify graphene oxide (GO), the obtained GO‐CS was used as a novel modifier to fabricate thin film composite forward osmosis (FO) membranes. The results revealed that the amino groups on CS reacted with carboxyl groups on GO, and the lamellar structure of the GO nanosheets was peeled off by CS, resulting in the reducing of their thicknesses. The GO‐CS improved the hydrophilicity of polyethersulfone (PES) substrate, and their contact angles decreased to 64° with the addition of GO‐CS in the substrate. GO‐CS also increased the porosity of the substrate and surface roughness of FO membrane, thereby optimizing the water flux and reverse salt flux of FO membrane. The average water flux of the FO membrane reached the optimal flux of 21.34 L/(m2 h) when GO‐CS addition was 0.5 wt%, and further addition of GO‐CS to the substrate would decrease the water flux of FO membrane, and the reverse salt flux also decreased to the lowest value of 2.26 g/(m2 h). However, the salt rejection of the membrane increased from 91.4% to 95.1% when GO‐CS addition increased from 0.5 to 1.0 wt% under FO mode using 1 mol/L sodium chloride (NaCl) solution as draw solution (DS). In addition, high osmotic pressure favored water permeation, and at the same concentration of DS, magnesium chloride (MgCl2) exhibited better properties than NaCl. These results all suggested that GO‐CS was a good modifier to fabricate FO membrane, and MgCl2 was a good DS candidate.  相似文献   

4.
Pre-irradiation grafting as a means to modify commerical poly(vinylidene fluoride) (PVDF) membranes has been studied. The membranes prepared were weak cation-exchange membranes (acrylic acid functionality), anion-exchange membranes (trimethyl ammonium functionality) and temperature-sensitive membranes (N-isopropyl amide functionality). Different graft loads were obtained by varying reaction time, radiation dose and in the case of acrylic acid the graft solution composition. The trimethyl ammonium chloride functionality was obtained by grafting vinyl benzyl chloride onto a PVDF membrane and aminating the benzyl chloride groups in a 45% trimethyl amine–water solution. For a membrane grafted with 9 wt% acrylic acid the flux increased approximately 70 times when the pH was decreased from 6 to 2. For a membrane with 5 wt% trimethyl ammonium functionality the flux increased both when pH was decreased below 3 and increased above 11. For a membrane grafted with 18 wt% N-isopropyl acrylamide a sharp increase of flux was observed when the temperature was raised above 32°C.  相似文献   

5.
The direct preparation of grafting polymer brushes from commercial poly (vinylidene fluoride) (PVDF) films with surface‐initiated atom transfer radical polymerization (ATRP) is demonstrated. The direct initiation of the secondary fluorinated site of PVDF facilitated grafting of the hydrophilic monomers from the PVDF surface. Homopolymer brushes of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the PVDF surface. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance/Fourier transform infrared spectroscopy, and atomic force microscopy. A kinetic study revealed a linear increase in the graft concentration of poly[2‐(N,N‐dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[poly(ethylene glycol) monomethacrylate] (PPEGMA) with the reaction time, indicating that the chain growth from the surface was consistent with a controlled or living process. The living chain ends were used as macroinitiators for the synthesis of diblock copolymer brushes. The water contact angles on PVDF films were reduced by the surface grafting of DMAEMA and PEGMA. Protein adsorption experiments revealed a substantial antifouling property of PPEGMA‐grafted PVDF films and PDMAEMA‐grafted PVDF films in comparison with the pristine PVDF surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3434–3443, 2006  相似文献   

6.
The ability to manipulate and control the surface properties of nylons is of crucial importance to their widespread applications. In this work, surface-initiated atom-transfer radical polymerization (ATRP) is employed to tailor the functionality of the nylon membrane and pore surfaces in a well-controlled manner. A simple two-step method, involving the activation of surface amide groups with formaldehyde and the reaction of the resulting N-methylol polyamide with 2-bromoisobutyryl bromide, was first developed for the covalent immobilization of ATRP initiators on the nylon membrane and its pore surfaces. Functional polymer brushes of 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol)monomethacrylate (PEGMA) were prepared via surface-initiated ATRP from the nylon membranes. A kinetics study revealed that the chain growth from the membranes was consistent with a "controlled" process. The dormant chain ends of the grafted HEMA polymer (P(HEMA)) and PEGMA polymer (P(PEGMA)) on the nylon membranes could be reactivated for the consecutive surface-initiated ATRP to produce the corresponding nylon membranes functionalized by P(HEMA)-b-P(PEGMA) and P(PEGMA)-b-P(HEMA) diblock copolymer brushes. In addition, membranes with grafted P(HEMA) and P(PEGMA) brushes exhibited good resistance to protein adsorption and fouling under continuous-flow conditions.  相似文献   

7.
Thin-film zeolite-filled silicone/PVDF composite membranes were fabricated by incorporating zeolite particles into PDMS(poly(dimethylsiloxane)) membranes.The morphology of zeolite particles and zeolite filled silicone composite membranes were characterized by SEM.The zeolite-filled PDMS/PVDF composite membranes were applied for the pervaporation of ethanol/water mixtures and showed higher flux compared with that reported in literatures.The effect of zeolite loading and Si/Al ratio of zeolite particles on...  相似文献   

8.
A dense-phase latex rubber tube and a polyporous propylene hollow-fiber membrane module (HFMM) were investigated for control of benzene-contaminated gas streams. The abiotic mass flux observed through the latex tube was 3.9–13 mg/(min·m2) for 150 ppm of benzene at various gas and liquid flow rates, while a 100-fold lower mass flux was observed in the HFMM. After seeding with an aromatic-degrading culture enriched from activated sludge, the observed removal was 80% of 150 ppm, corresponding toa mass flux of 45 mg/(min·m2). The observed mass flux through the HFMM during biofiltration also rose, to 0.4 mg/(min·m2). Because the HFMM had a 50-fold higher surface area than the latex tube, the observed ben zene removal was 99.8%. Compared to conventional biofilters, the two reactors had modest elimination capacities, 2.5–18 g/(m3·h) in the latex tube membrane bioreactor and 4.8–58 g/(m3·h) in the HFMM. Although the HFMM had a higher elimination capacity, the gas-phase pressure drop was much greater.  相似文献   

9.
Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m2/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins.  相似文献   

10.
朱蔚璞 《高分子科学》2011,29(3):288-295
P(AA-MA)copolymers composed of acrylic acid and methyl acrylate with different molecular weights and sequence structures were synthesized by combination of ATRP and selective hydrolysis.These copolymers were used as membrane materials to separate benzene/cyclohexane mixture by pervaporation.The effects of molecular weight and sequence structure of the copolymers on the pervaporation performance were investigated in detail.For the random copolymers,the permeate flux decreased rapidly with the increasing of molecular weight.The separation factor was also influenced by the molecular weight,which was changed from no selectivity to cyclohexane selectivity with increasing the molecular weight.Contrarily,the block copolymer membrane showed good benzene selectivity with separation factor of 4.3 and permeate flux of 157 g/(m~2h)to 50 wt%benzene/cyclohexane mixture.  相似文献   

11.
李新松 《高分子科学》2010,28(5):705-713
<正>Poly(vinylidenefluoride-hexafluoropropylene)(PVDF-HFP) nanofiber membranes with improved hydrophilicity and protein fouling resistance via surface graft copolymerization of hydrophilic monomers were prepared.The surface modification involves atmospheric pressure glow discharge plasma(APGDP) pretreatment followed by graft copolymerization of poly(ethylene glycol) methyl ether methacrylate(PEGMA).The success of the graft modification with PEGMA on the PVDF-HFP fibrous membrane is ascertained by X-ray photoelectron spectroscopy(XPS) and attenuated total reflectance Fourier transform infrared measurements(ATR-FTIR).The hydrophilic property of the nanofiber membranes is assessed by water contact angle measurements.The results show that the PEGMA grafted PVDF-HFP nanofiber membrane has a water contact angle of 0°compared with the pristine value of 132°.The protein adsorption was effectively reduced after PEGMA grafting on the PVDF-HFP nanofiber membrane surface.The PEGMA polymer grafting density on the PVDF-HFP membrane surface is measured by the gravimetric method,and the filtration performance is characterized by the measurement of water flux.The results indicate that the water flux of the grafted PVDF-HFP fibrous membrane increases significantly with the increase of the PEGMA grafting density.  相似文献   

12.
彭继华  郭贵宝 《应用化学》2019,36(8):909-916
利用四甲基氢氧化铵(TMAH)聚偏氟乙烯(PVDF)进行改性,以过氧化苯甲酰(BPO)为引发剂,将苯乙烯磺酸(SSA)接枝到改性的PVDF骨架上,制得聚偏氟乙烯接枝聚苯乙烯磺酸(PSSA-g-PVDF)油水分离膜。 研究了TMAH质量分数对PSSA的接枝率和油水分离膜性能的影响,同时采用傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和视频光学接触角测量仪测试了膜的结构和表面接触角。 结果表明,TMAH使PVDF脱去部分氟化氢(HF)产生碳碳双键,硫元素均匀地分布在分离膜中。 PSSA的接枝率随着TMAH的质量分数增加而升高,分离膜的水通量随接枝率的升高先增加后降低。 当TMAH质量分数为20%,分离膜的接触角在30 s内降低到37.2°,接枝率和水通量分别为22.1%、643.3 L/(m·h),截留率和水通量恢复率分别达到90.6%和93.7%,衰减率为7.1%。 循环测试显示膜的水通量恢复率和油水通量恢复率均在90%以上。  相似文献   

13.
Although water supplies are prominently dependent on desalination technology, desalination plant facing severe issues of discharged brine concentrate. Membrane distillation crystallization is an emerging synergistic technology that resolves the issue of brine concentrate by recovering clean water and value-added minerals simultaneously. In the present study, properties of polyvinylidene fluoride (PVDF) membrane were modified by incorporation of exfoliated fillers of hexagonal boron nitride and polyethylene glycol. The changes in morphology, surface roughness, hydrophobicity, thermal stability, and chemical composition of the prepared membranes were evaluated by scanning electron microscopy, atomic force microscopy, contact angle, thermogravimetric analysis, Fourier-transform infrared spectroscopy, respectively. Membrane distillation crystallization experiments were conducted to observe the effect of modified membranes on the permeate flux and salts recovery at different feed temperatures. The results showed a significant improvement in the permeate flux with modified membranes compared with pure PVDF membrane. It was found that hexagonal boron nitride/polyethylene glycol200 incorporated PVDF membrane gave the higher permeate flux (3.41 kg/m2 h for K2SO4 and 2.62 kg/m2 h for KNO3) at a temperature of 80 °C along with higher salts recovery than pure PVDF membranes. A 100 h long run test was conducted on modified membranes, which showed consistency in permeate flux with a marginal increase in conductivity.  相似文献   

14.
使用四乙基氢氧化铵(TEAH)液相本体改性聚偏氟乙烯(PVDF), 以过氧化苯甲酰(BPO)为引发剂, 将丙烯酸(AA)接枝到改性PVDF骨架上, 合成了聚偏氟乙烯接枝聚丙烯酸(PVDF-g-PAA)共聚物, 通过浸没沉淀法制备了PVDF-g-PAA亲水性油水分离膜. 通过傅里叶变换红外光谱(FTIR)、 扫描电子显微镜(SEM)和过滤试验分析了膜的结构和分离性能. 研究了不同接枝条件对PVDF-g-PAA膜接枝率的影响. 同时, 通过膜接枝率与膜表面接触角的关系确定最佳接枝条件. 结果表明, TEAH使PVDF脱去HF产生碳碳双键且PAA接枝到改性的PVDF骨架上, 膜内外孔隙分布均匀; PVDF-g-PAA膜的接触角随着接枝率的提高而降低. 接枝单体AA含量为45%, 接枝温度为85 ℃, 接枝4 h制备的PVDF-g-PAA膜的接枝率为20.1%, 孔隙度为65.3%, 平均孔径为78.0 nm, 接触角为57.5°, 且在60 s内接触角降至14.3°; 纯水通量提高到571.33 L/(m2·h), 截留率和水通量恢复率分别达到94.3%和88.7%, 且通量衰减率仅为9.8%. 与纯PVDF膜相比, PVDF-g-PAA膜的分离性能显著提高.  相似文献   

15.
Poly(methyl methacrylate) (PMMA) was anchored to multiporous poly(vinylidine fluoride) (PVDF) surface via electron beam preirradiation grafting technique to prepare PVDF/PMMA brushes. The conformation of the PVDF/PMMA brushes was verified through Attenuated total reflection‐Fourier transform infra red spectroscopy (ATR‐FTIR), energy dispersive X‐ray spectroscopy (EDX), and scanning electron microscopy (SEM). Thermal stability of PVDF/PMMA brushes was characterized by thermo gravimetric analysis (TGA). The degradation of PVDF/PMMA brushes showed a two‐step pattern. PVDF/PMMA brushes membrane could be used as polymer electrolyte in lithium‐ion rechargeable batteries after it was activated by uptaking 1 M LiPF6/EC‐DMC (ethylene carbonate/dimethyl carbonate; EC:DMC = 1:1 by volume) electrolyte solution. The activated membrane showed high ionic conductivity, 6.1 × 10?3 S cm?1 at room temperature, and a good electrochemical stability up to 5.0 V. The excellent performances of multiporous PVDF‐g‐PMMA membranes suggest that they are suitable for application in high‐performance lithium‐ion batteries. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 751–758, 2008  相似文献   

16.
In this study, the treatability of metal-plating waste water by modified direct contact membrane distillation (DCMD) at different temperature differences (ΔT = 30°C, 40°C, 50°C, and 55°C was investigated. Two different hydrophobic membranes made of poly(tetrafluoroethylene) (PTFE) and poly(vinylidene fluoride) (PVDF) having different pore sizes (0.22 μm and 0.45 μm) were used. The results indicated that conductivity, COD, sulphate, copper, and nickel could be successfully removed by modified DCMD. The rejection efficiencies for conductivity, COD, and sulphate were 99%, 86%, and 99%, respectively. Copper rejection was effective with both membranes while nickel concentration was below the limit of detection in the effluent. It was found that the pollutant rejection efficiency was affected by the raw water characteristics, membrane properties, and influent heating temperatures. In addition to the water quality parameters, the flux was measured to evaluate membrane performance. A high flux was obtained at 65°C (ΔT = 55°C) with 0.45 μm pore size PTFE membrane (24.1 L m?2 h?1) and with PVDF membrane (17.1 L m?2 h?1). The flux was mainly affected by temperature and membrane properties. As a result, modified DCMD and all the membranes used in this study were effective for the treatment of metal-plating waste water.  相似文献   

17.
Surface-initiated atom transfer radical polymerization (ATRP) was used to graft hydrophilic comb-like poly((poly(ethylene glycol) methyl ether methacrylate), or P(PEGMA), brushes from chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) membrane surfaces. Prior to ATRP, chloromethylation of PPESK was beforehand performed and the obtained CMPPESK was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPPESK membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) chains. Water contact angle measurements indicated that the introduction of P(PEGMA) graft chains promoted remarkably the surface hydrophilicity of PPESK membranes. The effects of P(PEGMA) immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that the comb-like P(PEGMA) grafts brought smaller pore diameters and higher solute rejections to PPESK membranes. The results of dynamic anti-fouling experiments showed the anti-fouling ability of the membranes was significantly improved after the grafting of P(PEGMA) brushes.  相似文献   

18.
A novel PBI/P84 co-polyimide dual-layer hollow fiber membrane has been specifically fabricated through the dry-jet wet phase inversion process, for the first time, for the dehydration pervaporation of tetrafluoropropanol (TFP). Polybenzimidazole (PBI) was chosen as the outer selective layer because of its superior hydrophilic nature and excellent solvent-resistance together with robust thermal stability, while P84 co-polyimide was employed as the inner supporting layer because of its good solvent-resistance and thermal stability. The PBI/P84 membrane exhibits superior water selectivity and relatively high permeation flux. At 60 °C, the PBI/P84 dual-layer hollow fiber membrane shows a permeation flux of 332 g/(m2 h) and a separation factor of 1990 for a feed solution containing of 85 wt% TFP. The preferential water sorption and the significant diffusivity difference between TFP and water are the main causes of high separation factor. However, an increase in feed temperature will greatly increase the permeation flux but seriously decrease the water selectivity. The activation energy data verify that water can preferentially permeate the PBI membrane due to the strong water affinity of PBI and a much smaller molecular size of water.  相似文献   

19.
In order to improve the antifouling performance of PVDF membrane, a novel zinc sulfide/graphene oxide/polyvinylidene fluoride (ZnS/GO/PVDF) composite membrane was prepared by immersed phase inversion method. The surface morphology, crystal structure, photocatalytic activity, and antifouling property of the as‐prepared membranes were systematically studied. Results showed that the ZnS/GO/PVDF hybrid membranes were successfully fabricated with uniform surface. The hybrid membrane surface possessed higher hydrophilicity with water contact angle decreasing from 77.1° to 62.2°. The permeability of the hybrid membrane was therefore enhanced from 222.9 to 326.1 L/(m2 hour). Moreover, bovine serum albumin (BSA) retention experiment showed that the hybrid membrane separation was also promoted by 7.2%. The blending of ZnS and GO enhanced the hydrophilic and photocatalytic performances of PVDF membrane, which mitigated the membrane fouling effectively. This novel hybrid membrane could accelerate the practical application of photocatalytic technology in membrane separation process.  相似文献   

20.
Hydrophilic surface modification of poly(phthalazinone ether sulfone ketone)(PPESK) porous membranes was achieved via surface-initiated atom transfer radical polymerization(ATRP) in aqueous medium.Prior to ATRP.chloromethyl groups were introduced onto PPESK main chains by chloromethylation.Chloromethvlated PPESK(CMPPESK) was fabricated into porous membrane through phase inversion technique.Hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate)(P(PEGMA)) brushes were grafted from CMPPESK membra...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号