首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nature and extent of preferential solvation in SNAr reaction between 1‐fluoro‐2,4‐dinitrobenzene and morpholine are observed to depend upon the concentration of amine. Positive deviation from ideality is observed during kinetic studies of reactions carried out with lower concentration of the amine, while reaction rates measured for systems containing higher concentration of the amine show negative deviation from ideal behavior. The anomaly originates from the competition between rate‐limiting proton transfer and fluoride abstraction step in the SNAr mechanism. The observations have been explained on the basis of the generally accepted mechanism and by calculation of preferential solvation parameters.  相似文献   

2.
Aromatic nucleophilic substitution reaction of 1‐fluoro‐2,4‐dinitrobenzene with para‐substituted and meta‐substituted anilines was kinetically investigated in the mixtures of ethyl acetate and methanol at room temperature. The correlation of second‐order rate coefficients with Hammett's substituent constants yields a fairly linear straight line with negative slope in different mole fractions of ethyl acetate–methanol mixtures. The measured rate coefficients of the reaction demonstrated a dramatic variation in ethyl acetate–methanol mixtures with the increasing mole fraction of ethyl acetate. Linear free energy relationship (LFER) investigations confirm that polarity has a major effect on the reaction rate whereas the hydrogen‐bonding ability of the media has a slight effect on it. Nonlinear free energy relationship based on preferential solvation hypothesis showed differences between the microsphere solvation of the solute and the bulk composition of the solvents, and non‐ideal behavior is observed in the trend of the rate coefficients, which cover the LFER results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The second‐order rate constants for cycloaddition reaction of cyclopentadiene with naphthoquinone were determined spectrophotometrically in various compositions of 1‐(1‐butyl)‐3‐methylimidazolium terafluoroborate ([bmim]BF4) with water and methanol at 25 °C. Rate constants of the reaction in pure solvents are in the order of water > [bmim]BF4 > methanol. Rate constants of the reaction decrease sharply with mole fraction of the ionic liquid in aqueous solutions and increase slightly to a maximum in alcoholic mixtures. Multi‐parameter correlation of logk2 versus solute–solvent interaction parameters demonstrated that solvophobicity parameter (Sp), hydrogen‐bond donor acidity (α) and hydrogen‐bond acceptor basicity (β) of media are the main factors influencing the reaction rate constant. The proposed three‐parameter model shows that the reaction rate constant increases with Sp, α and β parameters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The kinetics of the reactions of 2,4‐dinitrofluorobenzene (DNFB) and 2,4‐dinitrochlorobenzene (DNClB) with 2‐guanidinobenzimidazole (2‐GB) at 40 ± 0.2 °C in dimethylsulphoxide (DMSO), toluene, and in toluene–DMSO mixtures, and with 1‐(2‐aminoethyl)piperidine (2‐AEPip) and N‐(3‐aminopropyl)morpholine (3‐APMo) in toluene at 25 ± 0.2 °C were studied under pseudo first‐order conditions. For the reactions of 2‐GB carried out in pure DMSO, the second‐order rate coefficients were independent of the amine concentration. In contrast, the reactions of 2‐GB with DNFB in toluene, showed a kinetic behaviour consistent with a base‐catalysed decomposition of the zwitterionic intermediate. These results suggest an intramolecular H‐bonding of 2‐GB in toluene, which is not present in DMSO. To confirm this interpretation the reactions were studied in DMSO–toluene mixtures. Small amounts of DMSO produce significant increase in rate that is not expected on the basis of the classical effect of a dipolar aprotic medium; the effect is consistent with the formation of a nucleophile/co‐solvent mixed aggregate. For the reactions of 3‐APMo with both substrates in toluene, the second‐order rate coefficients, kA, show a linear dependence on the [amine]. 3‐APMo is able to form a six‐membered ring by an intramolecular H‐bond which prevents the formation of self‐aggregates. In contrast, a third order was observed in the reactions with 2‐AEPip: these results can be interpreted as a H‐bonded homo‐aggregate of the amine acting as a better nucleophile than the monomer. Most of these results can be well explained within the frame of the ‘dimer nucleophile’ mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The values of the enthalpy (53.3; 51.3; 20.0 kJ mol?1), entropy (?106; ?122; ?144 J mol?1K?1), and volume of activation (?29.1; ?31.0; ?cm3 mol?1), the reaction volume (?25.0; ?26.6; ?cm3 mol?1) and reaction enthalpy (?155.9; ?158.2; ?150.2 kJ mol?1) have been obtained for the first time for the ene reactions of 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione 1 , with cyclohexene 4 , 1‐hexene 6 , and with 2,3‐dimethyl‐2‐butene 8 , respectively. The ratio of the values of the activation volume to the reaction volume (?VcorrVr ? n) in the ene reactions under study, 1 + 4 → 5 and 1 + 6 → 7 , appeared to be the same, namely 1.16. The large negative values of the entropy and the volume of activation of studied reactions 1 + 4 → 5 and 1 + 6 → 7 better correspond to the cyclic structure of the activated complex at the stage determining the reaction rate. The equilibrium constants of these ene reactions can be estimated as exceeding 1018 L mol?1, and these reactions can be considered irreversible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The kinetic solvent effects on the 1,3‐dipolar cycloaddition (13DC) of benzonitrile N‐oxide with cyclopentene [T. Rispens and J. B. F. N. Engberts, J. Phys. Org. Chem. 2005; 18 , 908–917] have been studied using density functional theory (DFT) at the B3LYP/6‐31G(d) level. Solvent effects were analyzed by means of the polarizable continuum model (PCM). The analysis of the potential energy surface shows that this reaction follows an asynchronous concerted mechanism. The topological analysis of the electron localization function (ELF) of the turning points along the reaction pathway explains the diradical nature of mechanism of this reaction. Inclusion of solvent effects does not substantially modify this behavior. The present study points out that, contrary to Diels–Alder reactions, the increase in the solvent polarity leads to a slow inhibition of the 13DC reaction, because of the low polarity of the transition state. Explicit solvation involving the coordination of one water molecule to the dipole puts in evidence the importance of hydrogen bonding in the modest acceleration of this 13DC reaction. These results are in good agreement with experimental outcomes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a method of preparation of ocimene is investigated, which is obtained from isomerization reaction of α‐pinene. Two kinds of experimental apparatus are established for the investigation of the thermal isomerization reaction of α‐pinene. The behavior of thermal isomerization reaction of α‐pinene is respectively discussed in the gas phase and in the liquid phase. Under gas phase conditions, the conversion of α‐pinene is 80% and the selectivity of ocimene is 30%–33%. Under liquid phase conditions, the conversion of α‐pinene is 60% and the selectivity of ocimene is 50%–54%. According to the kinetic‐molecular theory of ideal gases, two kinds of reaction models are proposed to visualize the reaction process. In addition, the mechanism and kinetics of thermal isomerization reaction of α‐pinene are respectively discussed. The conclusion is that the gas phase reaction temperature is calculated to be 390–450 °C and the liquid phase reaction temperature is calculated to be 450–550 °C. From a bond dissociation energy point of view, results support the hypothesis that the reaction involves biradical intermediates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Nucleophilic substitution and dehydrochlorination reactions of a number of the ring‐substituted 1‐(arylsulfonyl)‐2‐R‐4‐chloro‐2‐butenes are studied both experimentally and theoretically. The developed synthetic procedures are characterized by a general rapidity, cheapness, and simplicity providing moderate to high yields of 1‐arylsulfonyl 1,3‐butadienes (48–95%), 1‐(arylsulfonyl)‐2‐R‐4‐(N,N‐dialkylamino)‐2‐butenes (31–53%), 1‐(arylsulfonyl)‐2‐R‐2‐buten‐4‐ols (37–61%), and bis[4‐(arylsulfonyl)‐3‐R‐but‐2‐enyl]sulfides (40–70%). The density functional theory B3LYP/6‐311++G(2d,2p) calculations of the intermediate allylic cations in acetone revealed their high stability occurring from a resonance stabilization and hyperconjugation by the SO2Ar group. The reactivity parameters estimated at the bond critical points of the diene/allylic moiety display a high correlation (R2 > 0.97) with the Hammett (σp) constants. 1‐Arylsulfonyl 1,3‐butadienes are characterized by a partly broken π conjugated system, which follows from analysis of the two‐centered delocalization (δ) and localization (λ) index values. The highest occupied molecular orbital energies of 1‐arylsulfonyl 1,3‐butadienes are lower than those of 1,3‐butadiene explaining their low reactivity towards the Diels–Alder condensation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The optical properties of several azobenzene derivatives were modulated by varying the dipole moments and conjugation lengths of the D‐π‐A systems. The relationship between the structure and absorption spectrum and polarizability was studied in the gas phase, THF and MeOH solutions, respectively, by using the density functional theory. The calculated absorption spectra and second‐order polarizabilities are in good agreement with the available experimental observations. In comparison with the D‐π‐A monomer, the H‐shaped D‐π‐A dimer almost doubles the dipole moments and hence increases the second‐order polarizabilities, without a significant shift in the maximum absorption bands. The addition of another azobenzol group between electron‐donating and ‐accepting groups increases the second‐order polarizabilities by 4–6 times, but leads to an evident red‐shift of about 65–80 nm in spectra. The relative second‐order polarizability of the halogen‐substituted derivatives is in the sequence of ? CF3 > ? F > ? Cl > ? Br, without obvious substituent effects on the optical transparency. The D‐π‐A chromophores with the strong electron‐donating (amino) and ‐accepting (acetyl) substituent present the larger second‐order polarizabilities, at the cost of about 20 nm red‐shift of the maximum absorption lengths relative to the halogen‐substituted species. It is also demonstrated that both the linear and nonlinear optical properties augment with the increase in solvent polarity, accompanied by a red‐shift in the wavelengths of maximum absorption by about 18 and 23 nm, respectively, in THF and MeOH solutions. The changes in optical properties upon the structural modifications are further rationalized by the electronic structures of various H‐shaped dimers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we describe the unprecedented reaction between α‐diazo esters 1 and iodine. The reaction, carried out in the presence of aqueous NaHCO3, afforded the Z‐isomer of the corresponding unsaturated‐2‐iodo ester 8 . The configuration of compounds 8 was determined using the 3JC? H coupling between carbonyl carbon atom and alkene proton. Mechanistic considerations accounting for the observed phenomena and including quantum chemical calculations are proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Solvolysis rates of 2‐(aryldimethylsilyl)‐1‐methylethyl and 2‐(aryldimethylsilyl)‐1‐tert‐butylethyl trifluoroacetates were determined conductimetrically in 60% (v/v) aqueous ethanol. The effects of aryl substituents at the silicon atom on the solvolysis rates at 50 °C were correlated with parameters of r+ = 0.15 with the Yukawa–Tsuno equation, giving ρ values of ?1.5 for both secondary α‐Me and αtert‐Bu systems. The ρ values for those secondary systems are less negative than ?1.75 for the 2‐(aryldimethylsilyl)ethyl system that proceeds by the Eaborn (non‐vertical) mechanism, while they are distinctly more negative than ?0.99 for 2‐(aryldimethylsilyl)‐1‐phenylethyl system that should proceed by the Lambert (vertical) mechanism. There was a fairly linear relationship between the reaction constants (ρ) for the β‐silyl substituent effects and the solvolysis reactivities for a series of β‐silyl substrates. The solvolyses of the α‐Me and tert‐Bu substrates proceed through the transition state (TS) with an appreciable degree of the β‐silyl participation, close to the Eaborn (non‐vertical) TS rather than to the Lambert (vertical) TS. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Recent studies have shown that general‐base assisted catalysis is a viable mechanistic pathway for hydrolysis of smaller anhydrides. Therefore, it is the central purpose of the present work to compare and contrast the number of hydrogen atoms in‐flight and stationary in the transition state structure of the base‐catalyzed mechanisms of 2 hydrolytic reactions as well as determine if any solvent effects occur on the mechanisms. The present research focuses on the hydrolytic mechanisms of N,N‐dimethylformamide (DMF) and acetic anhydride in alkali media of varying deuterium oxide mole fractions. Acetic anhydride has been included in this study to enable comparisons with DMF hydrolysis. Comparative studies may give synergistic insight into the detailed structural features of the activated complexes for both systems. Hydrolysis reactions in varying deuterium oxide mole fractions were conducted in concentrations of 2.0M , 2.5M , and 3.0M for DMF and 0.10M for acetic anhydride at 25°C. Studies in varying deuterium mole fractions allow for proton inventory analysis, which sheds light on the number and types of hydrogen atoms involved in the activated complex. For these systems, this type of study can distinguish between direct nucleophilic attack of the hydroxide ion on the carbonyl center and general‐base catalysis by the hydroxide ion to facilitate a water molecule attacking the carbonyl center. The numerical data are used to discuss 3 possible mechanisms in the hydrolysis of DMF.  相似文献   

14.
In the present work, using density functional theory and time‐dependent density functional theory methods, we investigated and presented the excited‐state intramolecular proton transfer (ESIPT) mechanisms of a novel Compound 1 theoretically. Analyses of electrostatic potential surfaces and reduced density gradient (RDG) versus sign(λ2)ρ, we confirm the existence of intramolecular hydrogen bond O1‐H2···N3 for Compound 1 in the S0 state. Comparing the primary structural variations of Compound 1 involved in the intramolecular hydrogen bond, we find that O1‐H2···N3 should be strengthened in the S1 state, which may facilitate the ESIPT process. Concomitantly, infrared (IR) vibrational spectra analyses further verify the stability of hydrogen bond. In addition, the role of charge transfer interaction has been addressed under the frontier molecular orbitals, which depicts the nature of electronical excited state and supports the ESIPT reaction. The theoretically scanned and optimized potential energy curves according to variational O1‐H2 coordinate demonstrate that the proton transfer process should occur spontaneously in the S1 state. It further explains why the emission peak of Compound 1‐enol was not reported in previous experiment. This work not only presents the ESIPT mechanism of Compound 1 but also promotes the understanding of this kind of molecules for further applications in future.  相似文献   

15.
We report on the reliability of Inx Al1–xN/AlN/GaN‐based heterostructure field‐effect transistors (HFETs) fabricated on five different wafers with varying indium compositions (0.12 ≤ x ≤ 0.20) encompassing the tensile/compressive strain fields. All of the tested devices underwent high field on‐state stress at 20 V DC drain bias and zero gate bias for five hours. We monitored the drain current and low‐frequency noise (LFN) a priori and a posteriori the stress treatment to quantify device degradation. HFETs suffering tensile strain showed remarkably large degradation which manifested itself with up to 25 dB increase in noise power and up to 72% loss of drain current after stress. On the other hand, devices fabricated on compressively strained structures remained intact after stress, but they had about 30 dB higher pre‐stress noise‐power levels and about 50% lower drain‐current densities to begin with. The results show that the nearly lattice‐matched In0.17Al0.83N barrier exhibited very low degradation along with current density remaining high compared with the devices having barriers with lower or higher indium content. Our results suggest that the nearly‐lattice‐matched InAlN can be a good candidate for devices due to its relatively better reliability while maintaining a high current density. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The mechanism and regioselectivities and stereoselectivities of the [3 + 2] cycloaddition (32CA) reaction of 3‐(benzylideneamino) oxindole (AY) and trans‐β‐nitrostyrene have been studied using both B3LYP and ωB97XD density functional theory methods together with the standard 6‐31G(d) basis set. Four reactive pathways associated with the ortho and meta regioselective channels and endo and exo stereoselective approaches modes have been explored and characterized. While the B3LYP functional fails to predict the experimental regioselectivity, the ωB97XD one succeeds to predict the experimentally observed meta regioselectivity favoring the formation of meta/endo cycloadduct as the major isomer. Inclusion of solvent effects increases the regioselectivity and decreases the experimentally observed stereoselectivity. Analysis of the density functional theory global reactivity indices and the Parr functions of the reagents in its ground state allows explaining the reactivity and the meta regioselectivity of this zwitterionic‐type 32CA reaction, which account for the high polar character of this reaction. Non‐covalent interaction analysis of the most favorable meta/endo transition state structure reveals that the formation of a hydrogen‐bond between 1 nitro oxygen and the AY N–H hydrogen is responsible for the selectivity experimentally found in this polar zwitterionic‐type 32CA reaction.  相似文献   

17.
Three parameters, , and , are developed to express the substituent effect and the effect of the parent molecular structure of p‐disubstituted compounds XPh(CH?CHPh)nY (n = 0, 1, 2). The investigated result shows a good correlation between the UV absorption wavenumbers (υmax) and the three parameters for a diverse set of title compounds, and the correlation equation can be used to predict the UV absorption energy of compounds with the mentioned structure. This approach provides a new insight for the quantitative structure‐property relationship (QSPR) correlation of the UV absorption energy of p‐disubstituted homologues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Excited‐state intermolecular or intramolecular proton transfer (ESIPT) reaction has important potential applications in biological probes. In this paper, the effect of benzo‐annelation on intermolecular hydrogen bond and proton transfer reaction of the 2‐methyl‐3‐hydroxy‐4(1H)‐quinolone (MQ) dye in methanol solvent is investigated by the density functional theory and time‐dependent density functional theory approaches. Both the primary structure parameters and infrared vibrational spectra analysis of MQ and its benzo‐analogue 2‐methyl‐3‐hydroxy‐4(1H)‐benzo‐quinolone (MBQ) show that the intermolecular hydrogen bond O1―H2?O3 significantly strengthens in the excited state, whereas another intermolecular hydrogen bond O3―H4?O5 weakens slightly. Simulated electron absorption and fluorescence spectra are agreement with the experimental data. The noncovalent interaction analysis displays that the intermolecular hydrogen bonds of MQ are obviously stronger than that of MBQ. Additionally, the energy profile analysis via the proton transfer reaction pathway illustrates that the ESIPT reaction of MBQ is relatively harder than that of MQ. Therefore, the effect of benzo‐annelation of the MQ dye weakens the intermolecular hydrogen bond and relatively inhibits the proton transfer reaction.  相似文献   

19.
20.
DFT calculations involving the B3LYP functional and 6‐31G(d) basis set have been performed to rationalize the reactivity, regioselectivity, enantioselectivity and diasteriofacial selectivity in the context of 1,3‐dipolar cycloaddition (13DC) reactions of a few acyclic and two cyclic azomethine ylides (AY) leading to enantiomeric/ diasteriomeric excess of the products. In particular, N‐substituted and C‐substituted AYs have been considered for reactions with the substituted ethylenes, maleimide, maleic anhydride and methyl acrylate. From an analysis of the results of calculation for the selected reactions, the regio‐ and exo/endostereoselectivity have been explained. Reactions were followed through transition state (TS) structure optimization, calculation of IRC and activation energies. A rationalization of the trends in regioselectivity and enantioselectivity was attempted with the help of HOMO–LUMO energies, electrophilicity differences (Δω) and an analysis of Pauling's bond order (PBO) in the TS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号