We demonstrate a new pathway for the synthesis of carbon nanohorns (CNHs) in a reactor by using inductively coupled plasma (ICP) and gaseous precursors. Thermal plasma synthesis allows the formation of different carbon allotropes such as carbon nanoflakes, hybrid forms of flakes and nanotubules, CNHs embryos, seed-like CNHs and onion-like polyhedral graphitic nanocapsules. In this study, pressure has the greatest impact on the selectivity of carbon nanostructures: pressure below 53.3 kPa favors the growth of carbon nanoflakes and higher pressures, 66.7 kPa and above, promotes the formation of CNHs. The ratio between methane and hydrogen as well as the global concentration of CH4?+?H2 inside the plasma flame are also crucial to the reaction. CNHs are formed preferentially by injection of a 1:2 ratio of H2 to CH4 at 82.7 kPa with a production rate of 20 g/h. The synthesis pathway is easily scalable and could be made continuous, which offers an interesting alternative compared to methods based on laser-, arc- or induction-based vaporization of graphite rods.
One-step synthesis of the stable dispersion of conjugated poly(4,4',4"-tris(N,N-diphenylamine) triphenylamine)—single-walled carbon nanotubes nanocomposite is carried out by the oxidative polymerization of the monomer of the triphenylamine derivative with a high density of free radicals of 4,4',4"- tris(N,N-diphenylamine)tripenylamine in the presence of the single-walled carbon nanotubes in concentrated formic acid. Benzoyl peroxide is used as an oxidant. Electroconductive film coatings are prepared by applying stable dispersion onto the Ni substrate. The coatings show a high specific electrochemical capacity and stability in long-term cycling in the aprotic 1 M LiClO4/propylene carbonate electrolyte.
Graphite-like carbon nitride nanowire bundles were synthesized from melamine via the solid state thermolysis at relatively low temperature(400 °C).Hexagonal carbon nitride tubes were prepared for the first time by heating the nanowire bundles at 550 °C in argon atmosphere.The forming process of tubes and transformation of the molecular structures from s-triazine rings to tri-s-triazine units were analyzed.The blue and yellow-green emission photoluminescent(PL) properties of the products were investigated in... 相似文献
A facile approach to individualize spherically aggregated pristine carbon nanohorns (pr‐CNHs) was established. Specifically, we found that treatment of pr‐CNHs with chlorosulfonic acid generates positively charged polarized species, which disintegrate toward individualized carbon nanohorns (in‐CNHs). Interestingly, the isolated in‐CNHs were revealed to be p‐doped owing to the adsorption of chlorosulfonate units. The findings were confirmed by data derived from high‐resolution transmission electron microscopy imaging, Raman and ultraviolet photoemission spectroscopy, and additionally supported by theoretical calculations and thermogravimetry. 相似文献
Promising materials have been designed and fully characterised by an effective interaction between versatile platforms such as carbon nanohorns (CNHs) and conjugated molecules based on thiophene derivatives. Easy and non‐aggressive methods have been described for the synthesis and purification of the final systems. Oligothiophenephenylvinylene (OTP) systems with different geometries and electron density are coupled to the CNHs. A wide range of characterization techniques have been used to confirm the effective interaction between the donor (OTP) and the acceptor (CNH) systems. These hybrid materials show potential for integration into solar cell devices. Importantly, surface‐enhanced Raman spectroscopy (SERS) effects are observed without the presence of any metal surface in the system. Theoretical calculations have been performed to study the optimised geometries of the noncovalent interaction between the surface and the organic molecule. The calculations allow information on the monoelectronic energies of HOMO–LUMO orbitals and band gap of different donor systems to be extracted. 相似文献
Single-walled carbon nanotubes (SWNTs) are promising materials for in vitro and in vivo biological applications due to their high surface area and inherent near infrared photoluminescence and Raman scattering properties. Here, we use density gradient centrifugation to separate SWNTs by length and degree of bundling. Following separation, we observe a peak in photoluminescence quantum yield (PL QY) and Raman scattering intensity where SWNT length is maximized and bundling is minimized. Individualized SWNTs are found to exhibit high PL QY and high resonance-enhanced Raman scattering intensity. Fractions containing long, individual SWNTs exhibit the highest PL QY and Raman scattering intensities, compared to fractions containing single, short SWNTs or SWNT bundles. Intensity gains of approximately ~1.7 and 4-fold, respectively, are obtained compared with the starting material. Spectroscopic analysis reveals that SWNT fractions at higher displacement contain increasing proportions of SWNT bundles, which causes reduced optical transition energies and broadening of absorption features in the UV-Vis-NIR spectra, and reduced PL QY and Raman scattering intensity. Finally, we adsorb small aromatic species on "bright," individualized SWNT sidewalls and compare the resulting absorption, PL and Raman scattering effects to that of SWNT bundles. We observe similar effects in both cases, suggesting aromatic stacking affects the optical properties of SWNTs in an analogous way to SWNT bundles, likely due to electronic structure perturbations, charge transfer, and dielectric screening effects, resulting in reduction of the excitonic optical transition energies and exciton lifetimes. 相似文献