首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
An n degree-of-freedom Hamiltonian system with r(1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the first-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging method for quasi-partially integrable Hamiltonian systems is briefly reviewed. Then, based on the averaged Itô equations, a backward Kolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of first-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and of maximization of mean first-passage time are formulated. The relationship between the backward Kolmogorov equation and the dynamical programming equation for reliability maximization, and that between the Pontryagin equation and the dynamical programming equation for maximization of mean first-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the effectiveness of feedback control in reducing first-passage failure.  相似文献   

2.
The approximate transient response of quasi integrable Hamiltonian systems under Gaussian white noise excitations is investigated. First, the averaged Ito equations for independent motion integrals and the associated Fokker-Planck-Kolmogorov (FPK) equation governing the transient probability density of independent motion integrals of the system are derived by applying the stochastic averaging method for quasi integrable Hamiltonian systems. Then, approximate solution of the transient probability density of independent motion integrals is obtained by applying the Galerkin method to solve the FPK equation. The approximate transient solution is expressed as a series in terms of properly selected base functions with time-dependent coefficients. The transient probability densities of displacements and velocities can be derived from that of independent motion integrals. Three examples are given to illustrate the application of the proposed procedure. It is shown that the results for the three examples obtained by using the proposed procedure agree well with those from Monte Carlo simulation of the original systems.  相似文献   

3.
The asymptotic Lyapunov stability with probability one of multi-degree-of freedom quasi-partially integrable and non-resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises is studied. First, the averaged stochastic differential equations for quasi partially integrable and non-resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are derived by means of the stochastic averaging method and the stochastic jump-diffusion chain rule. Then, the expression of the largest Lyapunov exponent of the averaged system is obtained by using a procedure similar to that due to Khasminskii and the properties of stochastic integro-differential equations. Finally, the stochastic stability of the original quasi-partially integrable and non-resonant Hamiltonian systems is determined approximately by using the largest Lyapunov exponent. An example is worked out in detail to illustrate the application of the proposed method. The good agreement between the analytical results and those from digital simulation show that the proposed method is effective.  相似文献   

4.
A hierarchy of Liouville integrable finite-dimensional Hamiltonian systems   总被引:1,自引:0,他引:1  
A hierarchy of Liouville integrable finite-dimensional Hamiltonian systems whose Hamiltonian phase flows commute with each other is generated and an infinite number of involutive explicit common integrals of notion and a set of its involutive explicit generators are given.  相似文献   

5.
The first passage failure of quasi-partial integrable generalized Hamiltonian systems is studied by using the stochastic averaging method. First, the stochastic averaging method for quasi-partial integrable generalized Hamiltonian systems is introduced briefly. Then, the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the conditional mean of first passage time are derived from the averaged Itô equations. The conditional reliability function, the conditional probability density and mean of the first passage time are obtained from solving these equations together with suitable initial condition and boundary conditions, respectively. Finally, one example is given to illustrate the proposed procedure in detail and the solutions are confirmed by using the results from Monte Carlo simulation of the original system.  相似文献   

6.
A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is proposed. The equations of motion for a controlled quasi integrable Hamiltonian system are reduced to a set of averaged Itô stochastic differential equations by using the stochastic averaging method. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximization of reliability and mean first-passage time are formulated. The optimal control law is derived from the dynamical programming equations and the control constraints. The final dynamical programming equations for these control problems are determined and their relationships to the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are separately established. The conditional reliability function and the mean first-passage time of the controlled system are obtained by solving the final dynamical programming equations or their equivalent Kolmogorov and Pontryagin equations. An example is presented to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

7.
An n degree-of-freedom Hamiltonian system with r(1<r<n) independent first integrals which are in involution is called partially integrable Hamiltonian system and a partially integrable Hamiltonian system subject to light dampings and weak stochastic excitations is called quasi partially integrable Hamiltonian system. In the present paper, the averaged Itô and Fokker-Planck-Kolmogorov (FPK) equations for quasi partially integrable Hamiltonian systems in both cases of non-resonance and resonance are derived. It is shown that the number of averaged Itô equations and the dimension of the averaged FPK equation of a quasi partially integrable Hamiltonian system is equal to the number of independent first integrals in involution plus the number of resonant relations of the associated Hamiltonian system. The technique to obtain the exact stationary solution of the averaged FPK equation is presented. The largest Lyapunov exponent of the averaged system is formulated, based on which the stochastic stability and bifurcation of original quasi partially integrable Hamiltonian systems can be determined. Examples are given to illustrate the applications of the proposed stochastic averaging method for quasi partially integrable Hamiltonian systems in response prediction and stability decision and the results are verified by using digital simulation.  相似文献   

8.
In this paper two different control strategies designed to alleviate the response of quasi partially integrable Hamiltonian systems subjected to stochastic excitation are proposed. First, by using the stochastic averaging method for quasi partially integrable Hamiltonian systems, an n-DOF controlled quasi partially integrable Hamiltonian system with stochastic excitation is converted into a set of partially averaged Itô stochastic differential equations. Then, the dynamical programming equation associated with the partially averaged Itô equations is formulated by applying the stochastic dynamical programming principle. In the first control strategy, the optimal control law is derived from the dynamical programming equation and the control constraints without solving the dynamical programming equation. In the second control strategy, the optimal control law is obtained by solving the dynamical programming equation. Finally, both the responses of controlled and uncontrolled systems are predicted through solving the Fokker-Plank-Kolmogorov equation associated with fully averaged Itô equations. An example is worked out to illustrate the application and effectiveness of the two proposed control strategies.  相似文献   

9.
An n degree-of-freedom (DOF) non-integrable Hamiltonian system subject to light damping and weak stochastic excitation is called quasi-non-integrable Hamiltonian system. In the present paper, the stochastic averaging of quasi-non-integrable Hamiltonian systems is briefly reviewed. A new norm in terms of the square root of Hamiltonian is introduced in the definitions of stochastic stability and Lyapunov exponent and the formulas for the Lyapunov exponent are derived from the averaged Itô equations of the Hamiltonian and of the square root of Hamiltonian. It is inferred that the Lyapunov exponent so obtained is the first approximation of the largest Lyapunov exponent of the original quasi-non-integrable Hamiltonian systems and the necessary and sufficient condition for the asymptotic stability with probability one of the trivial solution of the original systems can be obtained approximately by letting the Lyapunov exponent to be negative. This inference is confirmed by comparing the stability conditions obtained from negative Lyapunov exponent and by examining the sample behaviors of averaged Hamiltonian or the square root of averaged Hamiltonian at trivial boundary for two examples. It is also verified by the largest Lyapunov exponent obtained using small noise expansion for the second example.  相似文献   

10.
11.
A new procedure for designing optimal bounded control of quasi-nonintegrable Hamiltonian systems with actuator saturation is proposed based on the stochastic averaging method for quasi-nonintegrable Hamiltonian systems and the stochastic maximum principle. First, the stochastic averaging method for controlled quasi-nonintegrable Hamiltonian systems is introduced. The original control problem is converted into one for a partially averaged equation of system energy together with a partially averaged performance index. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The bounded optimal control forces are obtained from the maximum condition and solving the forward–backward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is stationary process, and the FBSDE is reduced to an ordinary differential equation. Finally, the stationary probability density of the Hamiltonian and other response statistics of optimally controlled system are obtained by solving the Fokker–Plank–Kolmogorov equation associated with the fully averaged Itô equation of the controlled system. For comparison, the bang–bang control is also presented. An example of two degree-of-freedom quasi-nonintegrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness. Numerical results show that the proposed control strategy has higher control efficiency and less discontinuous control force than the corresponding bang–bang control at the price of slightly less control effectiveness.  相似文献   

12.
In this study, an integrable Duhem hysteresis model is derived from the mathematical Duhem operator. This model can represent a wide category of hysteretic systems. The stochastic averaging method of energy envelope is then adapted for response analysis of the integrable Duhem hysteretic system subjected to non-white random excitation. Using the integrability of the proposed model, potential energy and dissipated energy of the hysteretic system can be represented in an integration form so that the hysteretic restoring force is separable into conservative and dissipative parts. Based on the equivalence of dissipated energy, a non-hysteretic non-linear system is obtained to substitute the original system, and the averaged Itô stochastic differential equation of total energy is derived with the drift and diffusion coefficients being expressed as Fourier series expansions in space averaging. The stationary probability density of total energy and response statistics are obtained by solving the Fokker–Planck–Kolmogorov (FPK) equation associated with the Itô equation. Verification is given by comparing the computational results with Monte Carlo simulations.  相似文献   

13.
A new procedure for designing optimal control of quasi non-integrable Hamiltonian systems under stochastic excitations is proposed based on the stochastic averaging method for quasi non-integrable Hamiltonian systems and the stochastic maximum principle. First, the control problem consisting of 2n-dimensional equations governing the controlled quasi non-integrable system and performance index is converted into a partially averaged one consisting of one-dimensional equation of the controlled system and performance index by using the stochastic averaging method. Then, the adjoint equation and the maximum condition of the partially averaged control problem are derived based on the stochastic maximum principle. The optimal control forces are determined from the maximum condition and solving the forward?Cbackward stochastic differential equations (FBSDE). For infinite time-interval ergodic control, the adjoint variable is a stationary process and the FBSDE is reduced to a partial differential equation. Finally, the response statistics of optimally controlled system is predicted by solving the Fokker?CPlank equation (FPE) associated with the fully averaged It? equation of the controlled system. An example of two degree-of-freedom (DOF) quasi non-integrable Hamiltonian system is worked out to illustrate the proposed procedure and its effectiveness.  相似文献   

14.
A semi-analytic method is presented for the analysis of transient response of one-dimensional distributed parameter systems. Replacing time differentials by finite difference, the governing partial differential equations are reduced to difference–differential equations. The solutions of derived ordinary differential equations are given in exact and closed form by distributed transfer function method. Complex systems that contain many one-dimensional sub-systems are also studied. Numerical results show that the efficiency and accuracy of the method are excellent.  相似文献   

15.
We study the geometry of completely integrable bi-Hamiltonian systems and, in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the affine structure determined by the action variables. This generalizes a result of Brouzet for dimension four.  相似文献   

16.
We study the bifurcation problem for a Cantor set of coisotropic invariant tori in the case where a Liouville-integrable Hamiltonian system undergoes locally Hamiltonian perturbations and, simultaneously, a deformation of the symplectic structure of the phase space. We consider a new case where the deformed symplectic structure generates a nondegenerate matrix of the Poisson brackets of action variables. __________ Translated from Neliniini Kolyvannya, Vol. 9, No. 2, pp. 221–232, April–June, 2006.  相似文献   

17.
18.
A procedure for designing optimal bounded control to minimize the response of quasi-integrable Hamiltonian systems is proposed based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stochastic dynamical programming principle. The equations of motion of a controlled quasi-integrable Hamiltonian system are first reduced to a set of partially completed averaged Itô stochastic differential equations by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, the dynamical programming equation for the control problems of minimizing the response of the averaged system is formulated based on the dynamical programming principle. The optimal control law is derived from the dynamical programming equation and control constraints without solving the dynamical programming equation. The response of optimally controlled systems is predicted through solving the Fokker-Planck-Kolmogrov equation associated with fully completed averaged Itô equations. Finally, two examples are worked out in detail to illustrate the application and effectiveness of the proposed control strategy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号