首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contributions of Co2+ and Nb4+ ions to the high-frequency dynamic magnetic susceptibility of the Co2[Nb(CN)8] · 8H2O molecular magnet in the paramagnetic state at T > 12 K are separated. It is found that the ferromagnetic ordering, which leads to the reconstruction of the electron paramagnetic resonance spectrum into the ferromagnetic resonance spectrum, occurs at T < 12 K. The influence of zeolite water on the spectra of the paramagnetic and ferromagnetic resonances is found. Dehydration leads to a decrease in the time of the spin relaxation of the ferromagnetic system from 50 ps to 17 ps at T = 4 K and to the variation in the temperature dependences of the widths of the lines and g factors in the electron spin resonance spectra.  相似文献   

2.
The magnetic and magnetocaloric properties of PrMn1.6Fe0.4Ge2around the ferromagnetic transitions T C inter ~ 230 K and T C Pr ~ 30 K have been investigated by magnetisation, 57Fe Mössbauer spectroscopy and electron paramagnetic resonance (EPR) measurements over the temperature range 5–300 K. The broad peaks in magnetic entropy around TC inter (intralayer antiferromagnetism of the Mn sublattice to canted ferromagnetism) and TC Pr (onset of ferromagnetic order of Pr sublattice in addition to ferromagnetically ordered Mn sublattice) are typical of second order transitions with maximum entropy values of -ΔS M ~ 2.0 J/kg K and -ΔS M ~ 2.2 J/kg K respectively for ΔB = 0–6 T. The EPR signal around T = 48 K of g value g ~ 0.8 is consistent with paramagnetic free ion Pr3?+?. Below TC Pr ~ 30 K the g value increases steadily to g ~ 2.5 at 8 K as saturation of the Pr3?+? ion is approached. The EPR measurements indicate additional effects in this system below T ~ 20 K with the appearance of EPR signals of low g value g ~ 0.6.  相似文献   

3.
We have studied the magnetic cluster compound Nb6F15 which has an odd number of 15 valence electrons per (Nb6F12)3+ cluster core, as a function of temperature using nuclear magnetic resonance, magnetic susceptibility, electron magnetic resonance and neutron powder diffraction. Nuclear magnetic resonance of the 19F nuclei shows two lines corresponding to the apical Fa?a nucleus, and to the inner Fi nuclei. The temperature dependence of the signal from the Fi nuclei reveals an antiferromagnetic ordering at T < 5 K, with a hyperfine field of ~2 mT. Magnetic susceptibility exhibits a Curie–Weiss behavior with T N ~5 K, and μ eff ~1.57 μB close to the expected theoretical value for one unpaired electron (1.73 μB). Electron magnetic resonance linewidth shows a transition at 5 K. Upon cooling from 10 to 1.4 K, the neutron diffraction shows a decrease in the intensity of the low-angle diffuse scattering below Q ~0.27 Å?1. This decrease is consistent with emergence of magnetic order of large magnetic objects (clusters). This study shows that Nb6F15 is paramagnetic at RT and undergoes a transition to antiferromagnetic order at 5 K. This unique antiferromagnetic ordering results from the interaction between magnetic spins delocalized over each entire (Nb6F 12 i )3+ cluster core, rather than the common magnetic ordering.  相似文献   

4.
The structural and magnetic properties of Pr0.75Na0.25MnO3 have been investigated experimentally. At room temperature, the compound shows paramagnetic characteristic. Along with decreasing temperature, a peak appears in the magnetization versus temperature curve around 220 K. To clarify whether this peak is associated with the ordering arrangement of Mn3+ and Mn4+ ions, electron diffraction experiments were carried out below and above 220 K respectively. Only basic Brag diffraction spots can be observed at high temperatures, however, superlattice diffraction appears below 220 K. This provides direct evidence for the existence of charge ordering in Pr0.75Na0.25MnO3. We find the Mn3+ and Mn4+ cations form zigzag chains in a-c plane by analyzing the diffraction patterns. Combining with the magnetization measurements and the results of electron spin resonance, we confirm the antiferromagnetic phase and ferromagnetic component coexist in Pr0.75Na0.25MnO3 below 120 K.  相似文献   

5.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

6.
The crystal structure and magnetic properties of the Nd(Mn?xCrx)O3 system (x≤0.85) have been studied. Substitution of chromium for manganese was shown to induce a transition from the antiferromagnetic to ferromagnetic state (x≈0.2) and a decrease in the critical temperature followed, conversely, by an increase in the Néel temperature and decay of spontaneous magnetization. At low temperatures, the magnetization was found to behave anomalously as a result of magnetic interaction between the ferromagnetic and antiferromagnetic phases. The formation of the ferromagnetic phase is attributed to destruction of cooperative static orbital ordering, while the coexistence of different magnetic phases is most probably due to internal chemical inhomogeneity of the solid solutions.  相似文献   

7.
Structural and magnetic properties of manganites series La0.57Nd0.1Sr0.33Mn1?x Sn x O3 with (0.05 ≤ x ≤ 0.30) have been investigated, and the critical exponents and magnetocaloric effect are studied around the room temperature, to shed light on Sn substitution influence. A solid-state reaction method was used in the preparation. A structural study using Rietveld refinement of XRD patterns indicates rhombohedral structure with R \( \overline{3} \) c space group for (0.05 ≤ x ≤ 0.20) and shows the existence of a secondary phase attributed to the neodymium tin oxide (Nd2Sn2O7) pyrochlore for x = 0.3. The variation of the magnetization (M) vs. temperature (T), under an applied magnetic field of 0.05 T, reveals a ferromagnetic–paramagnetic transition at the Curie temperature T C. In addition, it was discovered that increasing the tin content leads to a reduction in magnetization and a lowering of T C from 282 K (x = 0.05) to 158 K (x = 0.20) with increasing Sn substitution. The samples exhibit the characteristics of spin/cluster-glass state which is evident from (zero-field-cooled and field-cooled) magnetization vs. temperature curves. Indeed, the thermal evolution of magnetization in the ferromagnetic phase at low temperature varies as T 3/2, in accordance with Bloch’s law. The spin-stiffness constant D obtained from the Bloch constant was determined. A large magnetocaloric effect has been observed in both samples (x = 0.05 and x = 0.10): the maximum entropy change, \( \left| {\varDelta S_{\text{M} }^{\text{peak}} } \right| \) , reaches the highest value of 3.22 J/kg K under a magnetic field change of 5 T with a RCP value of 56 J/kg for x = 0.10 composition. This opens an interesting opportunity to this compound to compete with materials which work as magnetic refrigerants near room temperature. Besides, we show that the samples follow the conventional behavior of a second-order ferromagnetic transition. This was possible by investigating the critical behavior at the transition region by adopting the modified Arrott plot method. The values of the critical exponents (β, γ, δ and n) are determined and they are between those predicted by the three-dimensional Heisenberg model.  相似文献   

8.
We present a detail study of the effect of excess metal atoms on the magnetic properties of Cu1+xCr2+yTe4 at 2-400 K. With the increase in x=0-1 and y<0.3, these compounds retain metallic behavior, while ferromagnetic ordering temperature reduces from 325 to 160 K. Our low field susceptibility χac measurements reveal a second transition on cooling below the ferromagnetic ordering; the transition at around 160-180 K intensifies with the excess amount of copper and chromium atoms. The value of spontaneous magnetization at 2 K remains between 2.6 and 2.9μB across all the compositions and it reduces with temperature as M(T)∼A0T3/2+A1T5/2, as expected for the excitation of Bloch's spin waves in a model of the Heisenberg ferromagnet. Our terminal composition Cu1.9Cr2.25Te4 showed only second transition at 160 K with short range magnetic order much above the transition temperature and in the absence of the specific heat jump at this temperature. The magnetic properties are explained as a result of random magnetic anisotropy in the excess-metal compositions induced by the interstitial atomic defects in their parent spinel structure. The large stuffing of cations has been made possible in the telluride compounds because of the large size of tellurium and also by the covalent bonding that stabilizes the defect structure.  相似文献   

9.
57Fe (1%) doped SrCoO3 obtained by high-pressure method, has been investigated by magnetization and Mössbauer spectroscopy studies (MS) in the temperature range 4.2 K to 300 K. The ferromagnetic ordering temperature T C obtained is 272(2) K. Isothermal magnetization curves have been measured at various temperatures, from which the saturation moments (M sat) have been deduced. The 57Fe MS spectra display standard six-line patterns with an isomer shift typical of Fe3?+? and a very small quadrupole splitting (QS = 0.14(1) mm/s above T C). The magnetic hyperfine field at 4.2 K is 276(1) kOe. The temperature dependencies of the iron hyperfine field and M sat (1.83 µ B at 5 K) are almost identical. This shows that the Fe3?+? is replacing Co4?+?, both of the same electronic configuration. They also interact similarly, namely the Fe–Co exchange is almost identical to the Co–Co exchange.  相似文献   

10.
Aluminum- and chromium-substituted barium ferrite particles with single magnetic domain were prepared using self-propagating combustion method. The crystalline structure, size, coercivity and microwave absorption property of the particles were investigated by means of X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry and vector network analyzer. The results show that the crystalline structure of BaFe12−xAlxO19 is still hexagonal. But when the chromium substitution amount y exceeds 0.6, the extra chromium ions cannot enter the lattice of BaFe12−yCryO19. After Fe3+ is partly substituted with Al3+ and Cr3+, the microwave absorption properties of barium ferrite are improved. The maximum absorption reaches 34.76 dB. The ferromagnetic resonance is an important channel of barium ferrite to absorb microwaves with high frequency. Aluminum and chromium substitutions change the ferromagnetic resonant frequency of barium ferrite. The multipeak phenomenon of the ferromagnetic resonance increases the microwave absorption capability of barium ferrite.  相似文献   

11.
We report the results of a study of magnetic, electrical, and thermodynamic properties of a single crystal of the magnetic compound Cr0.26NbS1.74 at ambient and high pressures. Results of the measurements of magnetization as a function of temperature reveal the existence of a ferromagnetic phase transition in Cr0.26NbS1.74. The effective number of Bohr magnetons per Cr atom in the paramagnetic phase of Cr0.26NbS1.74 is µeff ≈ 4.6µB, which matches the literature data for Cr1/3NbS2. Similarly, the effective number of Bohr magnetons per Cr atom in the saturation fields is rather close in both substances and corresponds to the number of magnetons in the Cr+3 ion. In contrast to the stoichiometric compound, Cr0.26NbS1.74 does not show a metamagnetic transition, that indicates the lack of a magnetic soliton. A high-pressure phase diagram of the compound reveals the quantum phase transition at T = 0 and P ≈ 4.2 GPa and the triple point situated at T ≈ 20 K and P ≈ 4.2 GPa.  相似文献   

12.
The ferromagnetic phase transitions of the solid solution system EuxLa1-xS with Eu-concentrations x=0.85, 0.65 and 0.50 are analyzed by measurements of the initial permeability, the specific heat and the magnetization. For the sample with x=0.85 the spontaneous magnetization develops continuously between two temperatures Tc1 and Tc2. For the sample with x=0.65 a well defined magnetic ordering temperature exists. One observes strongly curved magnetization isotherms when plotting the magnetization data in form of modified Arrott plots. The M(H, T) data above the curved region show usual ferromagnetic scaling with the critical exponents β=0.5 and δ=4.7. These exponents fulfill the scaling relations with the exponents γ=2.1 and α≈-1 derived for the initial susceptibility and the magnetic specific heat. The sample with the concentration x=0.50 turns out to be not truely ferromagnetic. It is a spin glass with strong ferromagnetic short range order.  相似文献   

13.
A new layered oxide, sodium–cobalt tellurate Na3.70Co1.15TeO6, is synthesized and structurally characterized, and its static and dynamic magnetic properties are studied. This compound has a new monoclinic structure type with quasi-one-dimensional cation ordering in magnetically active layers. This compound is antiferromagnetically ordered at a Néel temperature T N ~ 3.3 K, and the temperature and field dependences of magnetization suggest competing antiferromagnetic and ferromagnetic interactions. EPR spectroscopy reveals complex spin dynamics when temperature changes and the presence of two different paramagnetic centers, which is attributed to the existence of two structurally nonequivalent (regular and antisite) positions for magnetic Co2+ ions.  相似文献   

14.
In this work, electron magnetic resonance (EMR) spectroscopy and magnetometry studies were employed to investigate the origin of the observed room-temperature ferromagnetism in chemically synthesized Sn1?x Fe x O2 powders. EMR data clearly established the presence of two different types of signals due to the incorporated Fe ions: paramagnetic spectra due to isolated Fe3+ ions and broad ferromagnetic resonance (FMR) spectra due to magnetically coupled Fe3+ dopant ions. EMR data analysis and simulation suggested the presence of high-spin (S = 5/2) Fe3+ ions incorporated into the SnO2 host lattice both at substitutional and at interstitial sites. The FMR signal intensity and the saturation magnetization M s of the ferromagnetic component increased with increasing Fe concentration. For Sn0.953Fe0.047O2 samples, well-defined EMR spectra revealing FMRs were observed only for samples prepared in the 350–600°C range, whereas for samples prepared at higher annealing temperatures up to 900°C, the FMRs and saturation magnetization were vanished due to diffusion and eventual expulsion of the Fe ions from the nanoparticles, in agreement with data obtained from Raman and X-ray photoelectron spectroscopy.  相似文献   

15.
The structural, transport and electron spin resonance properties of bulk and nanosized La0.875Sr0.125MnO3 prepared by a sol-gel method have been investigated. The bulk sample has an orthorhombic structure and a ferromagnetic insulating ground state. The ESR spectra indicate the coexistence of the ferromagnetic insulating and ferromagnetic metallic phases below TC. In addition to a sharp peak in the vicinity of TC, another sharp peak close to is clearly observed in the intensity of the spectra, which may be correlated with the structural transition and orbital ordering at this temperature. For the nanosized sample, a drastically different behavior is found. With a rhombohedral structure down to 70 K, the nanosized sample shows a ferromagnetic metallic ground state. The ESR studies reveal the coexistence of the paramagnetic and ferromagnetic resonance signals. The resonance intensity shows a broad peak around 200 K, which may be due to the wide ferromagnetic transition in the nanoparticle.  相似文献   

16.
Nuclear magnetic resonance of cobalt metal was investigated in the paramagnetic and ferromagnetic states and in the critical region below Tc. The Knight shift and spin lattice relaxation times were measured in the paramagnetic phase in the solid and liquid states from 1578 K to 1825 K. The resonant frequency, spin-lattice and spin-spin relaxation times were measured in the ferromagnetic phase from room temperature to 1385 K. The main part of (T1T)-1 results from fluctuating orbital moments in both phases except near Tc where this process forms the background for critical spin relaxation. The critical exponents for T-11 and for the magnetization in the ferromagnetic state were found to be n' = 0.96 ± 0.07 and β = 0.308 ± 0.012, respectively.  相似文献   

17.
We investigated magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with TC=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔSm=−7.2 J kg−1 K−1 at T=212.5 K and refrigeration capacity of 228 J kg−1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound.  相似文献   

18.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

19.
We present here a detailed study of electronic transport properties of the metallic-ferromagnetic compounds Cu1+xCr2Te4, having excess Cu atoms with x=0-1, from 2 to 400 K. The stuffing of the copper atoms in the parent structure reduces the ferromagnetic ordering temperature TC from 325 to 156 K, while for the entire range the dependence of the electrical resistance and the thermopower with temperature and the anomalies in them on the magnetic ordering remain similar. All the compounds show a magnon-drag contribution in thermopower as a positive maximum around TC/3, and a T2 - dependence of resistivity at low temperatures. The increasing effects of the short range magnetic ordering in the paramagnetic resistivity are seen with the increase in the stuffing of atoms in these compounds. The transport properties are explained by the current carriers —the holes in a wide energy band dominated by the p-state of Te-atoms, which are scattered by the spindisorder in the paramagnetic phase and from the magnons in the ferromagnetic phase.  相似文献   

20.
The structure, Raman spectroscopy, magnetization, and dielectric properties of delafossite-type oxide CuCr1−xAlxO2 have been characterized. It was found that Al substitution generates an anisotropic effect on the structure, besides magnetic dilution. The temperature dependence of all samples exhibits paramagnetic behavior at high temperature. Above x=0.2 the ferromagnetic transition at 120 K disappears. It is argued that Al substitution destabilizes the antiferromagnetic order of Cr3+ ions and modulates the spin configuration, leading to a weak ferromagnetism. The coupling between the magnetic order and ferroelectric order is also characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号