首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative study on the physical and optical properties of silica nanoparticles prepared by sol–gel has been carried out. Post-modification of as-synthesized silica nanoparticles produced organo-functionalized silica nanoparticles slightly increased in size (~20%) and relatively high aggregation. However, in situ method produced sixfold bigger functionalized particles with good dispersion and less aggregation. Higher organic content was observed for in situ modified nanosilica, leading to a higher surface hydrophobicity that improved compatibility and dispersion in preparation of silica-polymer nanocomposite. Furthermore, in situ and post-modified nanosilica demonstrated a distinct optical activity, photoluminescence and UV compared to the unmodified nanoparticles.  相似文献   

2.
Undoped and silver-doped TiO2 nanoparticles (Ti1?x Ag x O2, where x?=?0.00?C0.10) were synthesized by a sol?Cgel method. The synthesized products were characterized by X-ray diffraction (XRD), particle size analyzer (PSA), scanning electron microscope (SEM), and UV?CVisible spectrophotometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average crystallite size of synthesized nanoparticles was determined from X-ray line broadening using the Debye?CScherrer formula. The crystallite size was varied from 8 to 33?nm as the calcination temperature was increased from 300 to 800?°C. The incorporation of 3 to 5% Ag+ in place of Ti4+ provoked a decrease in the size of nanocrystals as compared to undoped TiO2. The SEM micrographs revealed the agglomerated spherical-like morphology of particles. SEM, PSA, and XRD measurements show that the particles size of the powder is in nanoscale. Optical absorption measurements indicated a red shift in the absorption band edge upon silver doping. Direct allowed band gap of undoped and Ag-doped TiO2 nanoparticles measured by UV?CVis spectrometer were 3.00 and 2.80?eV, respectively, at 500?°C.  相似文献   

3.
Nickel aluminates were prepared by sol–gel and impregnation methods and calcined at 1100 °C. The sol–gel made samples were prepared with different amounts of nickel (Ni/Al molar ratio equal to 0, 0.25, 0.5, and 0.75) and aging times (24 and 48 h). The samples were characterized by X-ray diffraction, induced couple plasma, nitrogen physisorption, transmission and scanning electron microscopy, and ammonia temperature programmed desorption (NH3-TPD). In the sol–gel made samples, only the NiAl2O4 structure of nickel aluminate was defined, while for impregnation, NiAl10O16 was formed as well. The sol–gel made samples had low specific surface areas (7.7–12.4 m2/g), but a sample prepared by impregnation method had higher specific surface area (67.2 m2/g). The surface acidity density decreased by increasing the amount of nickel and was the lowest for impregnation method.  相似文献   

4.
5.
The N-doped TiO2 has been synthesized by sol?Cgel method, using titanium isopropoxide, isopropanol and an aqueous solution of ammonia with ratio 2:1:10. The concentrations used for the NH3 aqueous solution were 3, 7, 10 and 15?%. The samples have been analysed by X-ray diffraction, electron microscopy (SEM and TEM) thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), micro-Raman spectroscopy and diffuse reflectivity. TEM, SEM, DSC and TGA showed that the morphology is influenced by the presence of N3? ions but not by the concentration of the solution. Instead reflectance gave us a relation between values of the energy gap and the concentration of N3? ions: the gap between valence and conduction band lowers as the concentration of NH3 in the starting solution increases. From these results we can say that the properties of the material have been tuned by doping with nitrogen ions because the particles absorb more light in the visible range, and this is important for photovoltaic and photocatalytic applications.  相似文献   

6.
Zinc doped nickel ferrite nanoparticles having the general formula Ni1−xZnxFe2O4 (x = 0.1, 0.2, 0.3, 0.4, 0.5) were prepared with simplified sol–gel method. The structural and dielectric properties of these samples sintered at 750 ± 5 °C were studied. X-ray diffraction patterns confirm the single phase spinel structure for prepared samples. The scanning electron microscope images indicated that the particle size of the samples lies in the nanometer regime. The dielectric constant (εr) and dielectric loss tangent (tan δ) of nanocrystalline nickel ferrites were investigated as a function of frequency and Zn concentration. The dependence of εr and tan δ on the frequency of the alternating applied electric field is in accordance with the Maxwell–Wagner model. The prepared samples have a lowest dielectric constant compared to the already reported samples of the same composition to the best of our knowledge. The effect of Zn doping on the dielectric properties of nickel ferrites is explained on the basis of cations distribution in the crystal structure.  相似文献   

7.
8.
9.
Stable highly concentrated TiO2 sol has been synthesized using binary titanyl ammonium sulfate monohydrate, (NH4)2TiO(SO4)2 · H2O. Treatment of the sol with an ammonia solution has yielded a stable hydrogel, which, after being dried, is transformed into a TiO2 xerogel. Study of the structure-related sorption and crystalline-chemical properties of the synthesized xerogel has shown that it represents a semicrystalline micro/mesoporous material with a rather developed specific surface area (Ssp = 120 m2/g). According to potentiometric titration data, the point of zero charge (PZC) of this material is located at pH 3.9. Measurements of the electrophoretic mobility (by microelectrophoresis) of TiO2 xerogel particles in solutions of HCl, NaOH, and salts of mono-, bi-, and trivalent cations have shown that (1) the isoelectric point (IEP) of the particles lies in the vicinity of pH 6.2, i.e., at a much higher pH than that for PZC; (2) the presence of increasing amounts of 1: 1 and 2: 1 electrolytes causes a gradual and a dramatic reduction in the ζ potential of the particles, respectively; and (3), in the presence of an electrolyte with a trivalent counterion, the surface charge is reversed. The behavior of TiO2 xerogel in an electric field is similar to that of lyophobic particles, with the difference that there is no maximum in the ζ potential versus 1: 1 electrolyte concentration dependence and the measured IEP of the xerogel is much higher than its PZC. Possible reasons for this discrepancy have been discussed.  相似文献   

10.
11.
Alkaline earth aluminates with the overall nominal compositions Ca0.5Sr0.5Al2O4, Ca0.5Mg0.5Al2O4 and Mg0.5Sr0.5Al2O4 doped with 1 mol% of Eu2+ ions were prepared by the modified aqueous sol–gel method. The thermal behaviour of the xerogels was studied by the TG/DSC-MS technique under an argon and a reductive atmosphere (Ar/H2–5 %). Appropriate luminescent efficiency of the materials was achieved after annealing at temperatures lower than those in conventional solid state reactions. All three aluminates are mixtures of at least two phases; the monoclinic phase of CaAl2O4, the hexagonal phase of SrAl2O4 and the cubic phase of MgAl2O4 were identified. Solid solubility was recognised in the Ca0.5Sr0.5Al2O4:Eu2+ composition due to the similar ionic radii of Ca2+ and Sr2+. UV excited luminescence was observed in the blue region (λmax = 441 nm) in the aluminates containing the monoclinic phase of CaAl2O4 and in the green region (λmax = 520 nm) in the Mg0.5Sr0.5Al2O4:Eu2+ composition.  相似文献   

12.
Journal of Sol-Gel Science and Technology - Sol–gel transition is a stage of the sol that evolves towards the formation of a gel-like network and that exhibits gradually a mobility loss....  相似文献   

13.
A fast and convenient sol–gel route was developed to synthesize LiFePO4/C composite cathode material, and the sol–gel process can be finished in less than an hour. Polyethyleneglycol (PEG), d-fructose, 1-hexadecanol, and cinnamic acid were firstly introduced to non-aqueous sol–gel system as structure modifiers and carbon sources. The samples were characterized by X-ray powder diffraction, field emission scanning electron microscopy, and elemental analysis measurements. Electrochemical performances of LiFePO4/C composite cathode materials were characterized by galvanostatic charge/discharge and AC impedance measurements. The material obtained using compound additives of PEG and d-fructose presented good electrochemical performance with a specific capacity of 157.7 mAh g−1 at discharge rate 0.2 C, and the discharge capacity remained about 153.6 mAh g−1 after 50 cycles. The results indicated that the improved electrochemical performance originated mainly from the microporous network structure, well crystalline particles, and the increased electronic conductivity by proper carbon coating (3.11%).  相似文献   

14.
(FePt)100Cu0, (FePt)95Cu5 and (FePt)90Cu10 nanoparticles (NPs) were successfully synthesized by the sol–gel method. The relationship between Cu doping and structure and magnetic properties of L10-FePt NPs was studied. The results indicated that all three samples originated a L10-FePt structure and Cu doping did not destroy the ordered structure of L10-FePt. By increasing the Cu content, c/a ratio of the FePtCu NPs linearly decreased. Pawley refinement showed symmetry of (FePt)95Cu5 NPs was still tetragonal. When the Cu concentration increased from 0 to 10 %, coercivity increased from 7,050 to 11,250 Oe. This result confirms that the prepared alloys can be promising candidates for magnetic storage applications.  相似文献   

15.
16.
Undoped and zinc-doped TiO2 nanoparticles (Ti1−xZnxO2 where x = 0.00–0.10) were synthesized by a sol–gel method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–VIS spectrometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average grain size was determined from X-ray line broadening using the Debye–Scherrer relation. The crystallite size was varied from 10 to 40 nm as the calcination temperature was increased from 350 to 800 °C. The incorporation of 3–5 mol% Zn2+ in place of the Ti4+ provoked a slight decrease in the size of nanocrystals as compared to undoped TiO2. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology with a diameter of about 10–30 nm and length of several nanometers, which is in agreement with XRD results. Optical absorption measurements indicated a blue shift in the absorption band edge upon 3–5 mol% zinc doping. Direct allowed band gap of undoped and Zn-doped TiO2 nanoparticles measured by UV–VIS spectrometer were 2.95 and 3.00 eV at 550 °C, respectively.  相似文献   

17.
18.
Scheelite type BaMoO4 nanofibers were prepared by using acrylamide assisted sol–gel process and electrospinning technique. The prepared Scheelite BaMoO4 nanofibers were characterized by using TG/DTA, XRD, FTIR, FT-Raman and SEM–EDX techniques. Thermal behavior, crystalline phase and structure of the prepared BaMoO4 nanofibers samples were confirmed from the analysis of the obtained results of TG/DTA, XRD, FTIR and FT-Raman respectively. SEM micrographs along with EDX showed the formation of one dimensional (1D) nanofibers 100–350 nm diameters and existence of Ba, Mo and O elements in the BaMoO4 nanofibers sample. The electrical conductivity of BaMoO4 nanofibers as a function of temperature 200–400 °C under air was evaluated by analyzing the measured impedance data using the winfit software. The newly prepared Scheelite type BaMoO4 nanofibers showed electrical conductivity of 0.92 × 10?3 S/cm at 400 °C.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号