首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The governing equations of elasticity theory for natural vibration and buck- ling of anisotropic plate are derived from Hellinger-Reissner's variational principle with nonlinear strain-displacement relations. Simply supported rectangular hybrid plates are studied with a precise integration method. This method, in contrast to the traditional finite difference approximation, gives highly precise numerical results that approach the full computer precision. So the results for natural vibration and stability of hybrid plates presented in the paper can be riewed as approximate analytical solutions. Furthermore, several types of coupling effects such as coupling between bending and twisting, and coupling between extension and bending, when the layer stacking sequence is asymmetric, are considered by only one set of governing equations.  相似文献   

2.
In this paper, an analytical solution for the free vibration of rotating composite conical shells with axial stiffeners (stringers) and circumferential stiffener (rings), is presented using an energy-based approach. Ritz method is applied while stiffeners are treated as discrete elements. The conical shells are stiffened with uniform interval and it is assumed that the stiffeners have the same material and geometric properties. The study includes the effects of the coriolis and centrifugal accelerations, and the initial hoop tension. The results obtained include the relationship between frequency parameter and circumferential wave number as well as rotating speed at various angles. Influences of geometric properties on the frequency parameter are also discussed. In order to validate the present analysis, it is compared with other published works for a non-stiffened conical shell; other comparison is made in the special case where the angle of the stiffened conical shell goes to zero, i.e., stiffened cylindrical shell. Good agreement is observed and a new range of results is presented for rotating stiffened conical shells which can be used as a benchmark to approximate solutions.  相似文献   

3.
In this paper, the large-amplitude (geometrically nonlinear) vibrations of rotating, laminated composite circular cylindrical shells subjected to radial harmonic excitation in the neighborhood of the lowest resonances are investigated. Nonlinearities due to large-amplitude shell motion are considered using the Donnell’s nonlinear shallow-shell theory, with account taken of the effect of viscous structure damping. The dynamic Young’s modulus which varies with vibrational frequency of the laminated composite shell is considered. An improved nonlinear model, which needs not to introduce the Airy stress function, is employed to study the nonlinear forced vibrations of the present shells. The system is discretized by Galerkin’s method while a model involving two degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the forced vibration responses of the two-degrees-of-freedom system. The stability of analytical steady-state solutions is analyzed. Results obtained with analytical method are compared with numerical simulation. The agreement between them bespeaks the validity of the method developed in this paper. The effects of rotating speed and some other parameters on the nonlinear dynamic response of the system are also investigated.  相似文献   

4.
本文用半解析法推导了周期集中载荷作用下,周边固定球形扁壳的非线性振动微分方程.然后用小参数法求出了非线性的非共振周期解和共振周期解.绘出了不同几何特征参数下的振幅——频率图.  相似文献   

5.
本文采用弹性圆锥扁壳中心无量纲振幅和壳体母线的倾角为参数,将挠度、应力函数的导数以及自由振动频率展开为双参量的幂级数形式.用直接摄动法获得各级递推线性偏微分方程.应用变分法求得各级递推方程的近似解答.从而给出弹性圆锥扁壳非线性自由振动频率的基本公式。  相似文献   

6.
采用Runge–Kutta法和多尺度法对轴向运动分层复合材料薄壁圆柱壳的非线性振动特性进行了研究。首先根据层合壳理论建立轴向运动分层复合材料薄壁圆柱壳的波动方程,利用Galerkin法对方程进行离散,得到相互耦合模态方程组。然后应用Runge –Kutta法分析了不同参数条件下的幅频特性曲线,得到了系统由于固有频率接近所导致的内共振现象,以及系统呈现软特性等非线性特性。最后采用多尺度法进行了系统1:1内共振时的近似解析分析,对系统在不同参数下的振动研究表明,激振力幅值、阻尼、速度等参数对位移响应幅值、共振区间、模态间的耦合度及系统软特性程度均有影响,其结论与数值计算结果一致,并同时对解的稳定性进行了研究。  相似文献   

7.
复合材料层合扁球壳的非线性强迫振动   总被引:4,自引:0,他引:4  
刘人怀  王王番 《力学学报》1997,29(2):236-241
研究了考虑横向剪切的对称层合圆柱正交异性扁球壳的非线性强迫振动问题,得到了共振周期解和非共振周期解.最后,还分析了横向剪切对幅频特性曲线的影响  相似文献   

8.
This paper deals with closed-form solutions for in-plane and out-of-plane free vibration of moderately thick laminated transversely isotropic spherical shell panels on the basis of Sanders theory without any usage of approximate methods. The governing equations of motion and the boundary conditions are derived using Hamilton’s principle. The highly coupled governing equations are recast to some uncoupled equations by introducing four potential functions. Also, some relations were presented for the unknowns of the original set of equations in terms of the unknowns of the uncoupled equations. According to the proposed analytical approach, both Navier and Lévy-type explicit solutions are developed for moderately thick laminated spherical shell panels. The efficiency and high accuracy of the present approach are investigated by comparing some of the present study with the available results in the literature and the results of 3D finite element method. The effects of various shell parameters like shear modulus ratio of transversely isotropic materials and curvature ratio on the natural frequencies are studied. Clearly, the proposed solutions can accurately predict the in-plane and out-of-plane natural frequencies of moderately thick transversely isotropic spherical shell panels.  相似文献   

9.
Yang  Shaowu  Hao  Yuxin  Zhang  Wei  Yang  Li  Liu  Lingtao 《应用数学和力学(英文版)》2021,42(7):981-998
In this study, the first-order shear deformation theory(FSDT) is used to establish a nonlinear dynamic model for a conical shell truncated by a functionally graded graphene platelet-reinforced composite(FG-GPLRC). The vibration analyses of the FG-GPLRC truncated conical shell are presented. Considering the graphene platelets(GPLs) of the FG-GPLRC truncated conical shell with three different distribution patterns, the modified Halpin-Tsai model is used to calculate the effective Young's modulus. Hamilton's principle, the FSDT, and the von-Karman type nonlinear geometric relationships are used to derive a system of partial differential governing equations of the FG-GPLRC truncated conical shell. The Galerkin method is used to obtain the ordinary differential equations of the truncated conical shell. Then, the analytical nonlinear frequencies of the FG-GPLRC truncated conical shell are solved by the harmonic balance method. The effects of the weight fraction and distribution pattern of the GPLs, the ratio of the length to the radius as well as the ratio of the radius to the thickness of the FG-GPLRC truncated conical shell on the nonlinear natural frequency characteristics are discussed. This study culminates in the discovery of the periodic motion and chaotic motion of the FG-GPLRC truncated conical shell.  相似文献   

10.
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells  相似文献   

11.
IntroductionCompositestructuresconsistingofshellsofrevolutionhavewideapplicationsinvariousengineeringfieldssuchasaerospace ,chemical,civil,mechanical,marineengineering .Duetothemathematicalcomplexityofshellequationsandthedifficultytomatchconditionsofthe…  相似文献   

12.
A nonlocal continuum orthotropic plate model is proposed to study the vibration behavior of single-layer graphene sheets (SLGSs) using an analytical symplectic approach.A Hamiltonian system is established by introduc-ing a total unknown vector consisting of the displacement amplitude,rotation angle,shear force,and bending moment. The high-order governing differential equation of the vibra-tion of SLGSs is transformed into a set of ordinary differential equations in symplectic space.Exact solutions for free vibra-tion are obtianed by the method of separation of variables without any trial shape functions and can be expanded in series of symplectic eigenfunctions. Analytical frequency equations are derived for all six possible boundary con-ditions. Vibration modes are expressed in terms of the symplectic eigenfunctions.In the numerical examples,com-parison is presented to verify the accuracy of the proposed method. Comprehensive numerical examples for graphene sheets with Levy-type boundary conditions are given.A para-metric study of the natural frequency is also included.  相似文献   

13.
Duc  Nguyen Dinh  Vuong  Pham Minh 《Meccanica》2022,57(5):1083-1103
Meccanica - The nonlinear vibration investigation of toroidal shell segment (TSS) with an analytical approach is presented in this paper. The TSS is considered as a sandwich structure with FGM core...  相似文献   

14.
Li  Chaofeng  Li  Peiyong  Zhong  Bingfu  Wen  Bangchun 《Nonlinear dynamics》2019,95(3):1903-1921

The geometrically nonlinear forced vibration response of non-continuous elastic-supported laminated composite thin cylindrical shells is investigated in this paper. Two kinds of non-continuous elastic supports are simulated by using artificial springs, which are point and arc constraints, respectively. By using a set of Chebyshev polynomials as the admissible displacement function, the nonlinear differential equation of motion of the shell subjected to periodic radial point loading is obtained through the Lagrange equations, in which the geometric nonlinearity is considered by using Donnell’s nonlinear shell theory. Then, these equations are solved by using the numerical method to obtain nonlinear amplitude–frequency response curves. The numerical results illustrate the effects of spring stiffness and constraint range on the nonlinear forced vibration of points-supported and arcs-supported laminated composite cylindrical shells. The results reveal that the geometric nonlinearity of the shell can be changed by adjusting the values of support stiffness and distribution areas of support, and the values of circumferential and radial stiffness have a more significant influence on amplitude–frequency response than the axial and torsional stiffness.

  相似文献   

15.
电活性聚合物圆柱壳静态与动态电压下的响应及稳定性   总被引:1,自引:1,他引:0  
摘要:在电活性聚合物圆柱壳内外表面施加电压,圆柱壳会变薄并且伸长,因此相同的电压会在圆柱壳内产生更大的电场。这个正反馈可能使圆柱壳厚度不断变薄,最终导致其失稳破坏。本文研究了电活性聚合物圆柱壳在静态和周期电压作用下的响应及稳定性问题。采用neo-Hookean材料模型得到描述圆柱壳表面运动的非线性常微分方程。给出了圆柱壳在不同厚度和边界条件下外加电压随圆柱壳变形的变化曲线,结果表明存在一个临界电压,当外加电压大于这一临界值时,圆柱壳将被破坏。同时,也讨论了厚度和边界条件对临界电压的影响。圆柱壳在正弦周期电压作用下,其运动随时间的变化是周期性的或拟周期性的非线性振动。给出了圆柱壳振动固有频率的计算结果,采用打靶法得到圆柱壳振动的周期解,并且用数值法研究了周期解的稳定性。采用数值仿真得到圆柱壳振动振幅随外加动态电压激励频率的变化曲线,结果表明圆柱壳会发生多频共振,共振时圆柱壳振幅发生跳跃,导致圆柱壳失稳破坏。最后给出共振点临近点的振动曲线和相图,并对其振动特性进行讨论。  相似文献   

16.
研究了四边简支条件下功能梯度圆锥壳的非线性自由振动。首先,通过Voigt模型和幂律分布模型描述了功能梯度材料的物理属性。然后,考虑von-Karman几何非线性建立了功能梯度圆锥壳的能量表达式,利用Hamilton原理推出圆锥壳的运动方程。在此基础上,采用Galerkin法,只考虑横向振动,功能梯度圆锥壳运动方程可简化为单自由度非线性振动微分方程。最后,通过改进的L-P法和Runge-Kutta法求解非线性振动方程,讨论功能梯度圆锥壳的非线性振动响应,分析几何参数和陶瓷体积分数指数对圆锥壳非线性频率响应的影响。结果表明,几何参数对非线性频率和响应的影响相较于陶瓷体积分数指数更明显;圆锥壳的几何参数和陶瓷体积分数指数通过改变非线性频率影响振动响应;功能梯度圆锥壳呈弹簧渐硬非线性振动特性。  相似文献   

17.
This paper studied the nonlinear vibration and resonance of a Cartesian manipulator system carrying an intermediate end effector under mixed excitations. The multiple scales method is applied to get the approximate solutions of this system of the second-order differential equation. Furthermore, the analytical solution obtained the amplitudes and phases of the response from the first-order differential equation governing. We extracted all worst resonance cases and studied it numerically. The numerical solutions and response amplitude of this system are also studied and discussed. We analyzed the stability of the steady-state solution of a Cartesian manipulator system using frequency response equations and phase plane technique at the worst resonance cases. Comparison between analytical and numerical solutions is obtained. We determined both bifurcation diagrams and stability using Poincaré maps. Also, the numerical results are obtained using MAPLE and MATLAB algorithms.  相似文献   

18.
牛江川  张婉洁  申永军  王军 《力学学报》2022,54(4):1092-1101
利用增量平均法研究了复合干摩擦阻尼器的准零刚度非线性隔振系统在外部简谐激励作用下的1/3次亚谐共振. 首先利用平均法得到了复合干摩擦的准零刚度隔振系统的主共振近似解析解, 然后在系统主共振近似解析解的基础上将系统的亚谐共振响应看作增量, 并利用平均法得到了准零刚度隔振系统的亚谐共振近似解析解. 利用李雅普诺夫方法得到了准零刚度隔振系统主共振和亚谐共振稳态解的稳定性条件, 并推导了系统1/3次亚谐共振的存在条件. 根据近似解析解分别得到了复合干摩擦的准零刚度隔振系统的主共振和亚谐共振力传递率. 利用数值解验证了准零刚度隔振系统主共振和亚谐共振近似解析解的准确性. 利用系统的近似解析解详细分析了准零刚度参数和干摩擦力对系统主共振和亚谐共振的幅频响应以及力传递特性的影响. 分析结果表明, 通过选取合适的干摩擦力参数, 可以消除准零刚度隔振系统在主共振区域的亚谐共振. 通过复合干摩擦阻尼器不但可以提高准零刚度隔振系统在低频区域的振幅抑制效果, 而且可以降低准零刚度隔振系统的起始隔振频率, 但是会增大系统在有效隔振频带内的力传递率.   相似文献   

19.
以纤维压电MFC (Micro-Fiber Composite)层合圆柱壳为例,研究了其在准静态屈曲下的非线性振动响应。基于Reissner-Mindlin一阶剪切变形假设,采用大转角几何全非线性理论,建立了带有纤维角度的MFC层合壳结构的非线性屈曲与振动分析模型。采用全拉格朗日方程(Total Lagrange Formulation)对非线性模型进行线性化处理,并结合Riks-Wempner弦长控制迭代法进行准静态求解,然后在每个解点进行自由振动分析。通过与文献数据对比验证了所建模型的准确性。并用该计算模型对MFC-d31层合圆柱壳进行屈曲及自由振动分析,研究了几何参数(曲率、厚度、纤维角度和不同外加电压)对频率的影响。结果表明,厚度、曲率和纤维增强角度对结构的临界载荷有显著的影响,且结构的临界载荷随着上述参数的增大而增大;电场强度可对不同纤维角度壳体的自振频率进行调节,能够提高结构的临界载荷;纤维角度越大,电压对结构自振频率调节的效果越明显。  相似文献   

20.
We consider parametrically excited vibrations of shallow cylindrical panels. The governing system of two coupled nonlinear partial differential equations is discretized by using the Bubnov–Galerkin method. The computations are simplified significantly by the application of computer algebra, and as a result low dimensional models of shell vibrations are readily obtained. After applying numerical continuation techniques and ideas from dynamical systems theory, complete bifurcation diagrams are constructed. Our principal aim is to investigate the interaction between different modes of shell vibrations under parametric excitation. Results for system models with four of the lowest modes are reported. We essentially investigate periodic solutions, their stability and bifurcations within the range of excitation frequency that corresponds to the parametric resonances at the lowest mode of vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号