首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-linked cellulose nanofibril (CNF) aerogel with positive and negative surface charge was prepared. For the surface charge modification of CNF from its intrinsic negative charge to positive charge, glycidyltrimethylammonium chloride was used. To stabilize the network structure of CNF aerogel in aqueous condition, maleic acid and sodium hypophosphite cross-linking treatment was applied. The ion adsorption properties of positive and negative charged cross-linked CNF aerogels were evaluated using the Langmuir adsorption model, and it was affected by pH of the ion solution. The maximum ion adsorption capacity of negatively charged cross-linked CNF aerogel was 0.79 mmol/g for the nickel cation while that of the positively charged cross-linked aerogel was 0.62 mmol/g for the permanganate anion.  相似文献   

2.
We present a method for synthesis of silver nanoparticles in N-methylmorpholine N-oxide (NMMO) and the associated mechanism, as well as their use for in situ volume modification of cellulose fibers. The synthesized particles had diameter of about 4 nm, and their colloid solution was stable for 1 year. The nanoparticles were stabilized using polyethylenimine, which apart from preventing nanoparticle agglomeration, also accelerated Ag+ ion reduction and prevented NMMO degradation. A mechanism for the nanoparticle synthesis is suggested based on the electrochemical potentials of all ions in solution, with perhydroxyl ions resulting from NMMO reducing the silver ions. We also created nanocomposites from fibers and silver nanoparticles, in which the latter showed very good dispersion in the fiber volume. Such spun fibers showed improved mechanical parameters in comparison with unmodified fibers.  相似文献   

3.
Poly[aniline(AN)‐co‐5‐sulfo‐2‐anisidine(SA)] nanograins with rough and porous structure demonstrate ultrastrong adsorption and highly efficient recovery of silver ions. The effects of five key factors—AN/SA ratio, AgI concentration, sorption time, ultrasonic treatment, and coexisting ions—on AgI adsorbability were optimized, and AN/SA (50/50) copolymer nanograins were found to exhibit much stronger AgI adsorption than polyaniline and all other reported sorbents. The maximal AgI sorption capacity of up to 2034 mg g?1 (18.86 mmol g?1) is the highest thus far and also much higher than the maximal Hg‐ion sorption capacity (10.28 mmol g?1). Especially at ≤2 mM AgI, the nanosorbents exhibit ≥99.98 % adsorptivity, and thus achieve almost complete AgI sorption. The sorption fits the Langmuir isotherm well and follows pseudo‐second‐order kinetics. Studies by IR, UV/Vis, X‐ray diffraction, polarizing microscopy, centrifugation, thermogravimetry, and conductivity techniques showed that AgI sorption occurs by a redox mechanism mainly involving reduction of AgI to separable silver nanocrystals, chelation between AgI and ? NH? /? N?/? NH2/ ? SO3H/? OCH3, and ion exchange between AgI and H+ on ? SO3?H+. Competitive sorption of AgI with coexisting Hg, Pb, Cu, Fe, Al, K, and Na ions was systematically investigated. In particular, the copolymer nanoparticles bearing many functional groups on their rough and porous surface can be directly used to recover and separate precious silver nanocrystals from practical AgI wastewaters containing Fe, Al, K, and Na ions from Kodak Studio. The nanograins have great application potential in the noble metals industry, resource reuse, wastewater treatment, and functional hybrid nanocomposites.  相似文献   

4.
In this work, we studied the adsorption of butane, toluene and nitric oxide on NaMordenite exchanged with different amounts of silver. The reactions that occurred when the adsorbed hydrocarbons interacted with NO and the effect of water adsorption were also addressed. Different silver species were formed after ion exchange and they were detected by TPR analysis. Highly dispersed Ag2O particles were reduced at temperatures lower than 300 °C whereas Ag+ exchanged ions showed two TPR peaks, which can be ascribed to species exchanged at different mordenite sites. The TPD experiments after adsorption of NO at 25 °C showed that the only desorbed species was NO2 which was formed by the total reduction of Ag2O particles. When the adsorbed butane was exposed to NO (1000 ppm), isocyanate species were formed on Ag+ ionic sites as well as Ag+–(NOx)–CO species. Toluene adsorption was stronger than butane since adsorbed toluene molecules were held even at 400 °C. The characteristic bands of the aromatic ring C=C bond was observed as well as that of methyl groups interacting with Ag+ and Na+ ions. However, the appearance of carboxylic groups at temperatures above 300 °C in inert flow indicated the partial oxidation of toluene due to Ag2O species present in the samples. After contacting adsorbed toluene with NO, different FTIR bands correspond to organic nitro-compounds, isocyanate, cyanide and isocyanide species adsorbed on Ag+ ions, were detected. The presence of water inhibited the formation of NO2 species and the hydrocarbon adsorption on Na+ sites but did not affect the toluene-Ag+ interaction.  相似文献   

5.
An efficient, novel and convenient method for the synthesis of modified polyacrylonitrile (PAN) with antibacterial property is reported. The modification of PAN was prepared by a nitrile click chemistry reaction with sodium azide (NaN3) and silver nitrate (AgNO3) as catalyst to yield antibacterial polymeric materials with 5-vinyltetrazole units. The results showed that 5-vinyltetrazole units had coordinated with silver ion (Ag+). Through the electrostatic spinning technology, the post-modification PAN nanofibers (PAN–Ag+ nanofibers) were prepared and the fibers were tested for their antimicrobial properties by the bacterial infection experiment. Afterwards, the antibacterial and stable performance of different proportions of silver ions in PAN nanofibers has been compared. The PAN–Ag+ nanofibers are characterized for mechanical and thermomechanical properties, structural analysis, appearance characteristics, as well as the antibacterial properties. And the nanofibers exhibit marvelous chemical stability according to the thermogravimetric analysis. When at 800 °C, the PAN decomposed about 60%, while the decomposition of the PAN–Ag+s was 40%. Based on the bacterial infection experiment, PAN–Ag+ nanofibers’ antibacterial properties were stronger with the increase of silver ions, such as the number of bacteria clone was smaller and the bacteriostatic ring was larger. Hence, with combination of silver ions, the final polymers show strong antimicrobial properties.  相似文献   

6.
Summary Waste waters of film processing plants are rich with silver. Part of the silver is regenerated electrochemically, but the rest (0.5 g) remains in waste waters and is sent to sewers. This is a bad politic from both the environmental (toxic waste waters) and the economical point of view (a waste of silver). In this work, the silver was isolated by ion-exchange resins and then concentrated by microorganisms. For exchange of silver, Ionenaustauscher I, II and IV were used. The batch method was used to obtain a static equilibrium. Silver elution from exchangers is based on silver transformation to a stable cation or anion complex. By varying the ligands, pH and eluent concentrations, optimum elution is found at 1 mol/l Na2S2O3, 1 mol/l NH3, 2 mol/l HNO3 and 1 mol/l (NH2)2CO. The concentration of silver in the eluent is about 50 mg/l. The silver ion uptake from solutions after ion exchange by mixed bacterial culture isolated from photographic waste water drain and pure bacterial cultures Escherichia coli 3009 and Bacillus subtilis 3053. was studied. Experiments were carried out in submerse culture at pH 7 with different Ag+ concentrations (4, 8 and 40 mg/l) on a rotary shaker (100 rpm) at 37°C. At the lower Ag+ concentrations a good growth and simultaneous removal of Ag+ from the solutions was achieved. At Ag+ concentration of 40 mg/l growth and removal of Ag+ by mixed and pure culture differed significantly. Thus mixed bacterial culture grew well and at the same time removed efficiently Ag+ (approximately 90%) from medium. Pure bacterial cultures on the contrary were unable to grow at 40 mg/l Ag+, though their biomass showed to be an effective biosorbent for Ag+ (approximately 80% of Ag+ removal).  相似文献   

7.
Cellulose nanocrystals (CNC) isolated from bleached bagasse pulp were modified with a second-generation isocyanate dendron (G2-dendron) to prepare dendronized cellulose nanocrystals (DCN). Transmission electron microscopy (TEM), elemental analysis for nitrogen, Fourier transform infrared (FTIR) and 13C magic angle spinning nuclear magnetic resonance (13C MAS NMR) proved occurrence of the modification of cellulose nanocrystals surfaces. The dendronized cellulose nanocrystals were used as templates for formation of ZnS and CdS quantum dots with uniform diameter at low temperature in water. The prepared DCN/QDs were highly soluble in water. TEM images showed that the size of the prepared quantum dots was about 5 nm in diameter. UV-Visible and fluorescence spectroscopy showed absorption and emission at wavelength values lower than that reported for bulk ZnS and CdS.  相似文献   

8.
Cellulose nanocrystals (CNCs) prepared from cellulose fibre via sulfuric acid hydrolysis was used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of pH, adsorbent dosage, temperature, ionic strength, initial dye concentration were studied to optimize the conditions for the maximum adsorption of dye. Adsorption equilibrium data was fitted to both Langmuir and Freundlich isotherm models, where the Langmuir model better described the adsorption process. The maximum adsorption capacity was 118 mg dye/g CNC at 25 °C and pH 9. Calculated thermodynamic parameters, such as free energy change (ΔG = ?20.8 kJ/mol), enthalpy change (ΔH = ?3.45 kJ/mol), and entropy change (ΔS = 0.58 kJ/mol K) indicates that MB adsorption on CNCs is a spontaneous exothermic process. Tunability of the adsorption capacity by surface modification of CNCs was shown by oxidizing the primary hydroxyl groups on the CNC surface with TEMPO reagent and the adsorption capacity was increased from 118 to 769 mg dye/g CNC.  相似文献   

9.
The behavior of a mixture of negatively charged cellulose nanocrystals (CNCs) and positively charged poly(allylamine) (PAAm) is examined in aqueous media. By modulating the pH, the acting Coulomb forces can be varied that can lead not only to adsorption of PAAm chains on the CNC surface but also to the development of a supermolecular structure by bridging of CNC rods by extended PAAm chains. This bridging can result in the formation of CNC clusters, which was demonstrated experimentally. Light scattering and rheological studies showed that these clusters begin to grow and merge, ultimately forming a global percolated network above a critical degree of PAAm ionization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1527–1536  相似文献   

10.
A borondipyrrolemethene-based compound (1) is synthesized and used as a “turn-on” fluorescent probe for silver ions (Ag+). The probe displays highly sensitive fluorescence response toward Ag+ with a 40-fold fluorescence enhancement when 60 μM of Ag+ is added. The fluorescence intensity of the probe is linearly dependent on Ag+ concentration ranging from 0.05 to 60 μM. And the detection limit (LOD) can reach 0.02 μM, which complies with the standard of World Health Organization (WHO) for drinking water (0.9 μM). Moreover, the probe shows remarkable selectivity for Ag+ over other metal ions. Furthermore, the response behavior of 1 toward Ag+ is pH independent in the neutral range from 6.0 to 8.0. The response of 1 toward Ag+ is fast (response time is less than 2 min) and reversible chemically. What’s more, the sensing mechanism of probe 1 toward Ag+ is verified by mass spectra (MS) and density functional theory (DFT) calculations. In particular, the probe is applied for detection of Ag+ in water samples and living cells successfully.  相似文献   

11.
In order to improve the antimicrobial activity of bacterial cellulose (BC), the silver nanoparticles (Ag NPs) were in situ fabricated on the BC membranes, affording BC and Ag hybrid antimicrobial materials, BC + Ag, which possesses excellent antimicrobial performance. Typically, carboxyl groups were firstly introduced into BC by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation. Then, the carboxyl-functionalized BC was performed with ion-exchange reaction to change the sodium ions into Ag+ by immersing in AgNO3 aqueous solution, generating Ag+ anchored BC. Finally, two types of distinct reductive reagents including NaBH4 and sodium citrate were employed to transform Ag+ into Ag NPs to fabricate BC + Ag. The diameters of Ag NPs were determined to be 3.8 nm for NaBH4-reduced BC + Ag, and 22.0 nm for sodium citrate-reduced one, respectively. The silver content of BC + Ag were determined to be 1.944 and 2.895 wt% for NaBH4-reduced sample and sodium citrate-reduced one, respectively. Two types of BC + Ag both showed a slow and persistent Ag+ release profile, but the NaBH4-reduced one released much more Ag+ than that of sodium citrate under the same measurement condition. In-depth antibacterial analysis via the disc diffusion and colony forming count method disclosed that BC + Ag exhibited strong bactericidal effects against both Escherichia coli and Staphylococcus aureus. And the antibacterial activity of NaBH4-reduced BC + Ag was higher than the sodium citrate-reduced one. Overall, this study would further improve the antibacterial efficiency of BC + Ag.  相似文献   

12.
A novel thia-aza substituted macrocyclic diamide 7,10,13-triaza-1-thia-4,16-dioxa-20,24-dimethyl-2,3;17,18-dibenzo-cyclooctadecane-6,14-dione (L) was synthesized and stability of its complexes with several alkaline earth, transition and heavy metal ions were studied conductometrically in methanol solution. The resulting 1:1 Ag+L complex found to be the most stable one among all cation complexes studied. The optimized structures of the ligand and its Ag+ complex were also investigated. Based on the preliminary results thus obtained, L was used as an excellent sensing material to prepare polymeric membrane (PME) and coated graphite (CGE) silver-selective electrodes. The electrodes revealed a Nernstian behavior over wide Ag+ ion concentration ranges (i.e., 2.0 × 10?6–1.0 × 10?2 M for PME and 5.0 × 10?7–1.0 × 10?2 M for CGE). The potentiometric responses were independent of pH of the test solution in the range 2.9–6.8. The electrodes possessed advantages of low resistance, relatively fast response time, long lifetimes and, especially, good selectivity relative to a wide variety of other cations. The electrodes were used, as indicator electrodes, in the potentiometric titration of silver ion and in the determination of Ag+ ion in waste water, photographic emulsion, radiographic and photographic films and dental amalgams.  相似文献   

13.
A solid-phase extraction method for preconcentration of silver and consequent determination by atomic absorption spectrometry is described. The method is based on the retention of silver on sulfur modified with 2-mercaptobenzoxazole. The retained silver is eluted from the column with a thiourea solution and determined by flame atomic absorption spectrometry. The preconcentration conditions such as pH, amount of reagent loaded on sorbent, type of eluent and its volume, flow rate and interfering ions were investigated. The calibration graph was linear in the range of 3–200 ng mL?1 of Ag+ in the initial solution with r = 0.9985. The limit of detection based on 3Sb was 1.0 ng mL?1. The relative standard deviation for ten replicate measurements of 50 and 150 ng mL?1 of Ag+ was 4.1 and 1.4 %, respectively. The method was applied to the determination of silver in radiology film and water samples.  相似文献   

14.
Label-free Hg2+ aptamer was used as a sensing element and the PicoGreen dye was specific to ultra-sensitive double-stranded DNA (dsDNA), which achieved novel fluorescence assay for detection of both mercury and silver ions. In this aptasensor, Hg2+ bound to thymidine (T) to form T–Hg2+-T base pairs and Ag+ specifically interacted with C–C mismatches to produce C–Ag+–C base pairs. The conformation changes prevented the aptamer from binding to its complementary sequences to form dsDNA and caused a fluorescence intensity decrease with PicoGreen. The change in the fluorescence intensity made it possible to detect both Hg2+ and Ag+ in a dose-dependent manner. The sensing system could detect as low as 5 × 10–8 mol/L of Hg2+ and 9.3 × 10–10 mol/L of Ag+. The fluorescent intensity changes in the system were specific for Hg2+ and Ag+, making this simple and cost-effective method extremely valuable in its future applications in monitoring Hg2+ and Ag+ pollution in environmental analysis.  相似文献   

15.
Every year vast quantities of silver are lost in various waste streams; this, combined with its limited, diminishing supply and rising demand, makes silver recovery of increasing importance. Thus, herein, we report a controllable, green process to produce a host of highly porous metal–organic framework (MOF)/oligomer composites using supercritical carbon dioxide (ScCO2) as a medium. One resulting composite, referred to as MIL-127/Poly-o-phenylenediamine (PoPD), has an excellent Ag+ adsorption capacity, removal efficiency (>99 %) and provides rapid Ag+ extraction in as little as 5 min from complex liquid matrices. Notably, the composite can also reduce sliver concentrations below the levels (<0.1 ppm) established by the United States Environmental Protection Agency. Using theoretical simulations, we find that there are spatially ordered polymeric units inside the MOF that promote the complexation of Ag+ over other common competing ions. Moreover, the oligomer is able to reduce silver to its metallic state, also providing antibacterial properties.  相似文献   

16.
Dibenzo-18-crown-6 (DBC) was immobilized on crosslinked polyvinyl alcohol (CPVA) microspheres, resulting in polymer-supported crown ether DBC–CPVA. The complexation adsorption behaviors of DBC–CPVA microspheres towards diverse metal ions were investigated. The experimental results show that among alkali metal ions, the complexation adsorption ability of DBC–CPVA for K+ ion is the strongest, and crown ether-metal complex in 1:1 ratio is formed, exhibiting a high adsorption capacity. The adsorption capacities of alkali metal ions on DBC–CPVA are in the order: K+ ? Na+ > LI+ > Rb+ > Cs+. Among several divalent metal ions, DBC–CPVA exhibits stronger adsorption ability towards Zn2+ and Co2+ ions, and a “sandwich”-type complex is formed probably in a molar ratio of 2:1 between the immobilized DBC and Zn2+ ion as well as between the immobilized DBC and Co2+ ion. The adsorption capacities of the several divalent metal ions on DBC–CPVA are in the order: Zn2+ > Co2+ ? Cd2+ > Cu2+ > Ni2+ > Pb2+. The complexation adsorption is exothermic physical physisorption process, and raising temperature leads to the decrease of the adsorption capacity. At the same time, the entropy during the complexation adsorption decreases, so the adsorption process is driven by the decrease of enthalpy.  相似文献   

17.
Liu X  Li W  Shen Q  Nie Z  Guo M  Han Y  Liu W  Yao S 《Talanta》2011,85(3):1603-1608
The heavy metal ions-nucleobases interaction is an important research topic in environmental and biochemical analysis. The presence of the silver ion (Ag+) may influence the formation of oxidation intermediate and the electrocatalytic oxidation activity of guanine (G), since Ag+ can interact with guanine at the binding sites which are involved in the electrocatalytic oxidation reaction of guanine. According to this principle, a new electrochemical sensor for indirectly detecting Ag+ based on the interaction of Ag+ with isolated guanine base using differential pulse voltammetry (DPV) was constructed. Among the heavy metal ions examined, only Ag+ showed the strongest inhibitory effect on the electrocatalytic oxidation of guanine at the multi-walled carbon nanotubes modified glassy carbon electrode (CNTs/GC). And the quantitative study of Ag+ based on Ag+-G sensing system gave a linear range from 100 nM to 2.5 μM with a detection limit of 30 nM. In addition, this modified electrode had very good reproducibility and stability. The developed electrochemical method is an ideal tool for Ag+ detection with some merits including remarkable simplicity, low-cost, and no requirement for probe preparation.  相似文献   

18.
Cellulose nanocrystals (CNC) was obtained from bamboo pulp via ultrasonication-assisted FeCl3-catalyzed hydrolysis process, with parameters optimized by response surface methodology. The optimal parameters were reaction temperature: 107 °C, reaction time: 58 min, ultrasonication time: 186 min. The morphological, crystal structural, chemical structural and thermal features of the prepared cellulose nanocrystals were analyzed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transfer infrared (FTIR) and thermogravimetric analysis. The results showed that the cellulose nanocrystals formed an interconnected network structure and CNC was rod-like with the length of 100–200 nm and the width of 10–20 nm. XRD result revealed that, compared with cellulose pulp, the crystallinity index of CNC increased from 69.5 to 79.4 %, while the cellulose I crystal structure remained. FTIR analysis demonstrated that CNC had the similar chemical structures to that of cellulose pulp, which indicated that the chemical structures of CNC remained unchanged in the presence of FeCl3-catalyzed hydrolysis process and ultrasonication treatment. Thermogravimetric analysis revealed that the resulting CNC exhibited relatively high thermal stability. The research shows that ultrasonication-assisted FeCl3-catalyzed hydrolysis could be a highly efficient method for preparing CNC.  相似文献   

19.
Three different resins namely 1:5 MC-resin, 1:3 MC-resin and 1:1 MC-resin have been synthesized by methylene crosslinking of 2-pyridylcalix[4]arene. Adsorption behavior of these resins towards the metal ions existing in photographic waste was investigated. The resins show absolute efficiency for adsorption of silver ion with no affinity for other coexisting ions. First two resins form 1:1 complex whereas the third one forms 2:1 complex with silver ion. Maximum loading capacity of silver ion on the present resins was found to be 1.15, 1.29 and 0.69 mol kg?1, respectively. Column chromatographic separation of silver ion in presence of excess of sodium ions was also carried out with 1:5 MC-resin. Selective adsorption of silver ions over excess of sodium ions was achieved.  相似文献   

20.
A high flux of positively and negatively charged metal cluster ions was produced in a sputtering arrangement, energy-analyzed and mass-filtered. The resulting mono-dispersed cluster ion beam was introduced into a quadrupole drift tube, where it interacted with a laser beam or reacted with an introduced gas. All inelastic scattering events were recorded with a subsequent quadrupole mass filter. The results exhibited a high sensitivity of positively and negatively charged silver clusters Ag n ± (n≤16) with respect to photofragmentation. Ion-molecule reactions of nickel clusters with carbon monoxide allowed to synthesize very interesting organometallic and carbonyl compounds, and the maximum number of ligands provided interesting structural indications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号