首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper develops a theory for the global solution of nonconvex optimization problems with parameter-embedded linear dynamic systems. A quite general problem formulation is introduced and a solution is shown to exists. A convexity theory for integrals is then developed to construct convex relaxations for utilization in a branch-and-bound framework to calculate a global minimum. Interval analysis is employed to generate bounds on the state variables implied by the bounds on the embedded parameters. These bounds, along with basic integration theory, are used to prove convergence of the branch-and-bound algorithm to the global minimum of the optimization problem. The implementation of the algorithm is then considered and several numerical case studies are examined thoroughly  相似文献   

2.
Geometric branch-and-bound methods are popular solution algorithms in deterministic global optimization to solve problems in small dimensions. The aim of this paper is to formulate a geometric branch-and-bound method for constrained global optimization problems which allows the use of arbitrary bounding operations. In particular, our main goal is to prove the convergence of the suggested method using the concept of the rate of convergence in geometric branch-and-bound methods as introduced in some recent publications. Furthermore, some efficient further discarding tests using necessary conditions for optimality are derived and illustrated numerically on an obnoxious facility location problem.  相似文献   

3.
Geometric branch-and-bound methods are commonly used solution algorithms for non-convex global optimization problems in small dimensions, say for problems with up to six or ten variables, and the efficiency of these methods depends on some required lower bounds. For example, in interval branch-and-bound methods various well-known lower bounds are derived from interval inclusion functions. The aim of this work is to analyze the quality of interval inclusion functions from the theoretical point of view making use of a recently introduced and general definition of the rate of convergence in geometric branch-and-bound methods. In particular, we compare the natural interval extension, the centered form, and Baumann’s inclusion function. Furthermore, our theoretical findings are justified by detailed numerical studies using the Weber problem on the plane with some negative weights as well as some standard global optimization benchmark problems.  相似文献   

4.
A classical problem within the field of structural optimization is to find the stiffest truss design subject to a given external static load and a bound on the total volume. The design variables describe the cross sectional areas of the bars. This class of problems is well-studied for continuous bar areas. We consider here the difficult situation that the truss must be built from pre-produced bars with given areas. This paper together with Part I proposes an algorithmic framework for the calculation of a global optimizer of the underlying non-convex mixed integer design problem. In this paper we use the theory developed in Part I to design a convergent nonlinear branch-and-bound method tailored to solve large-scale instances of the original discrete problem. The problem formulation and the needed theoretical results from Part I are repeated such that this paper is self-contained. We focus on the implementation details but also establish finite convergence of the branch-and-bound method. The algorithm is based on solving a sequence of continuous non-convex relaxations which can be formulated as quadratic programs according to the theory in Part I. The quadratic programs to be treated within the branch-and-bound search all have the same feasible set and differ from each other only in the objective function. This is one reason for making the resulting branch-and-bound method very efficient. The paper closes with several large-scale numerical examples. These examples are, to the knowledge of the authors, by far the largest discrete topology design problems solved by means of global optimization.  相似文献   

5.
We discuss the convergence of a decomposition branch-and-bound algorithm using Lagrangian duality for partly convex programs in the general form. It is shown that this decomposition algorithm has all convergence properties as any known branch-and-bound algorithm in global optimization under usual assumptions. Thus, some strict assumptions discussed in the literature are avoidable.  相似文献   

6.
Deterministic branch-and-bound algorithms for continuous global optimization often visit a large number of boxes in the neighborhood of a global minimizer, resulting in the so-called cluster problem (Du and Kearfott in J Glob Optim 5(3):253–265, 1994). This article extends previous analyses of the cluster problem in unconstrained global optimization (Du and Kearfott 1994; Wechsung et al. in J Glob Optim 58(3):429–438, 2014) to the constrained setting based on a recently-developed notion of convergence order for convex relaxation-based lower bounding schemes. It is shown that clustering can occur both on nearly-optimal and nearly-feasible regions in the vicinity of a global minimizer. In contrast to the case of unconstrained optimization, where at least second-order convergent schemes of relaxations are required to mitigate the cluster problem when the minimizer sits at a point of differentiability of the objective function, it is shown that first-order convergent lower bounding schemes for constrained problems may mitigate the cluster problem under certain conditions. Additionally, conditions under which second-order convergent lower bounding schemes are sufficient to mitigate the cluster problem around a global minimizer are developed. Conditions on the convergence order prefactor that are sufficient to altogether eliminate the cluster problem are also provided. This analysis reduces to previous analyses of the cluster problem for unconstrained optimization under suitable assumptions.  相似文献   

7.
A global optimization method, QBB, for twice-differentiable NLPs (Non-Linear Programming) is developed to operate within a branch-and-bound framework and require the construction of a relaxed convex problem on the basis of the quadratic lower bounding functions for the generic nonconvex structures. Within an exhaustive simplicial division of the constrained region, the rigorous quadratic underestimation function is constructed for the generic nonconvex function structure by virtue of the maximal eigenvalue analysis of the interval Hessian matrix. Each valid lower bound of the NLP problem with the division progress is computed by the convex programming of the relaxed optimization problem obtained by preserving the convex or linear terms, replacing the concave term with linear convex envelope, underestimating the special terms and the generic terms by using their customized tight convex lower bounding functions or the valid quadratic lower bounding functions, respectively. The standard convergence properties of the QBB algorithm for nonconvex global optimization problems are guaranteed. The preliminary computation studies are presented in order to evaluate the algorithmic efficiency of the proposed QBB approach.  相似文献   

8.
Convex relaxations can be used to obtain lower bounds on the optimal objective function value of nonconvex quadratically constrained quadratic programs. However, for some problems, significantly better bounds can be obtained by minimizing the restricted Lagrangian function for a given estimate of the Lagrange multipliers. The difficulty in utilizing Lagrangian duality within a global optimization context is that the restricted Lagrangian is often nonconvex. Minimizing a convex underestimate of the restricted Lagrangian overcomes this difficulty and facilitates the use of Lagrangian duality within a global optimization framework. A branch-and-bound algorithm is presented that relies on these Lagrangian underestimates to provide lower bounds and on the interval Newton method to facilitate convergence in the neighborhood of the global solution. Computational results show that the algorithm compares favorably to the Reformulation–Linearization Technique for problems with a favorable structure.  相似文献   

9.
高岳林  井霞 《计算数学》2013,35(1):89-98
提出了求解一类线性乘积规划问题的分支定界缩减方法, 并证明了算法的收敛性.在这个方法中, 利用两个变量乘积的凸包络技术, 给出了目标函数与约束函数中乘积的下界, 由此确定原问题的一个松弛凸规划, 从而找到原问题全局最优值的下界和可行解. 为了加快所提算法的收敛速度, 使用了超矩形的缩减策略. 数值结果表明所提出的算法是可行的.  相似文献   

10.
This paper addresses the global optimization of problems which contain convex-transformable functions. We present algorithms for identification of convex-transformable functions in general nonconvex problems, and introduce a new class of cutting planes based on recently developed relaxations for convex-transformable functions. These cutting planes correspond to the supporting hyperplanes of these convex relaxations. We integrate our recognition and cutting plane generation algorithms into the global solver BARON, and test our implementation by conducting numerical experiments on a large collection of nonconvex problems. Results demonstrate that the proposed implementation accelerates the convergence speed of the branch-and-bound algorithm, by significantly reducing computational time, number of nodes in the search tree, and required memory.  相似文献   

11.
Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat truncation as a certificate for this purpose. Assume the set of global minimizers is nonempty and finite. Our main results are: (1) Putinar type Lasserre’s hierarchy has finite convergence if and only if flat truncation holds, under some generic assumptions; the same conclusion holds for the Schmüdgen type one under weaker assumptions. (2) Flat truncation is asymptotically satisfied for Putinar type Lasserre’s hierarchy if the archimedean condition holds; the same conclusion holds for the Schmüdgen type one if the feasible set is compact. (3) We show that flat truncation can be used as a certificate to check exactness of standard SOS relaxations and Jacobian SDP relaxations.  相似文献   

12.
A general branch-and-bound conceptual scheme for global optimization is presented that includes along with previous branch-and-bound approaches also grid-search techniques. The corresponding convergence theory, as well as the question of restart capability for branch-and-bound algorithms used in decomposition or outer approximation schemes are discussed. As an illustration of this conceptual scheme, a finite branch-and-bound algorithm for concave minimization is described and a convergent branch-and-bound algorithm, based on the previous one, is developed for the minimization of a difference of two convex functions.  相似文献   

13.
The problem of approximating the global minimum of a function of two variables is considered. A method is proposed rooted in the statistical approach to global optimization. The proposed algorithm partitions the feasible region using a Delaunay triangulation. Only the objective function values are required by the optimization algorithm. The asymptotic convergence rate is analyzed for a class of smooth functions. Numerical examples are provided.  相似文献   

14.
Fast construction of constant bound functions for sparse polynomials   总被引:1,自引:0,他引:1  
A new method for the representation and computation of Bernstein coefficients of multivariate polynomials is presented. It is known that the coefficients of the Bernstein expansion of a given polynomial over a specified box of interest tightly bound the range of the polynomial over the box. The traditional approach requires that all Bernstein coefficients are computed, and their number is often very large for polynomials with moderately-many variables. The new technique detailed represents the coefficients implicitly and uses lazy evaluation so as to render the approach practical for many types of non-trivial sparse polynomials typically encountered in global optimization problems; the computational complexity becomes nearly linear with respect to the number of terms in the polynomial, instead of exponential with respect to the number of variables. These range-enclosing coefficients can be employed in a branch-and-bound framework for solving constrained global optimization problems involving polynomial functions, either as constant bounds used for box selection, or to construct affine underestimating bound functions. If such functions are used to construct relaxations for a global optimization problem, then sub-problems over boxes can be reduced to linear programming problems, which are easier to solve. Some numerical examples are presented and the software used is briefly introduced.  相似文献   

15.
This two part paper considers the classical problem of finding a truss design with minimal compliance subject to a given external force and a volume bound. The design variables describe the cross-section areas of the bars. While this problem is well-studied for continuous bar areas, we treat here the case of discrete areas. This problem is of major practical relevance if the truss must be built from pre-produced bars with given areas. As a special case, we consider the design problem for a single bar area, i.e., a 0/1-problem. In contrast to heuristic methods considered in other approaches, Part I of the paper together with Part II present an algorithmic framework for the calculation of a global optimizer of the underlying large-scaled mixed integer design problem. This framework is given by a convergent branch-and-bound algorithm which is based on solving a sequence of nonconvex continuous relaxations. The main issue of the paper and of the approach lies in the fact that the relaxed nonlinear optimization problem can be formulated as a quadratic program (QP). Here the paper generalizes and extends the available theory from the literature. Although the Hessian of this QP is indefinite, it is possible to circumvent the non-convexity and to calculate global optimizers. Moreover, the QPs to be treated in the branch-and-bound search tree differ from each other just in the objective function. In Part I we give an introduction to the problem and collect all theory and related proofs for the treatment of the original problem formulation and the continuous relaxed problems. The implementation details and convergence proof of the branch-and-bound methodology and the large-scale numerical examples are presented in Part II.  相似文献   

16.
In continuous branch-and-bound algorithms, a very large number of boxes near global minima may be visited prior to termination. This so-called cluster problem (J Glob Optim 5(3):253–265, 1994) is revisited and a new analysis is presented. Previous results are confirmed, which state that at least second-order convergence of the relaxations is required to overcome the exponential dependence on the termination tolerance. Additionally, it is found that there exists a threshold on the convergence order pre-factor which can eliminate the cluster problem completely for second-order relaxations. This result indicates that, even among relaxations with second-order convergence, behavior in branch-and-bound algorithms may be fundamentally different depending on the pre-factor. A conservative estimate of the pre-factor is given for $\alpha $ BB relaxations.  相似文献   

17.
In this paper, we consider a special class of nonconvex programming problems for which the objective function and constraints are defined in terms of general nonconvex factorable functions. We propose a branch-and-bound approach based on linear programming relaxations generated through various approximation schemes that utilize, for example, the Mean-Value Theorem and Chebyshev interpolation polynomials coordinated with a Reformulation-Linearization Technique (RLT). A suitable partitioning process is proposed that induces convergence to a global optimum. The algorithm has been implemented in C++ and some preliminary computational results are reported on a set of fifteen engineering process control and design test problems from various sources in the literature. The results indicate that the proposed procedure generates tight relaxations, even via the initial node linear program itself. Furthermore, for nine of these fifteen problems, the application of a local search method that is initialized at the LP relaxation solution produced the actual global optimum at the initial node of the enumeration tree. Moreover, for two test cases, the global optimum found improves upon the solutions previously reported in the source literature. Received: January 14, 1998 / Accepted: June 7, 1999?Published online December 15, 2000  相似文献   

18.
The optimization of multimodal functions is a challenging task, in particular when derivatives are not available for use. Recently, in a directional direct search framework, a clever multistart strategy was proposed for global derivative-free optimization of single objective functions. The goal of the current work is to generalize this approach to the computation of global Pareto fronts for multiobjective multimodal derivative-free optimization problems. The proposed algorithm alternates between initializing new searches, using a multistart strategy, and exploring promising subregions, resorting to directional direct search. Components of the objective function are not aggregated and new points are accepted using the concept of Pareto dominance. The initialized searches are not all conducted until the end, merging when they start to be close to each other. The convergence of the method is analyzed under the common assumptions of directional direct search. Numerical experiments show its ability to generate approximations to the different Pareto fronts of a given problem.  相似文献   

19.
We propose a branch-and-bound framework for the global optimization of unconstrained Hölder functions. The general framework is used to derive two algorithms. The first one is a generalization of Piyavskii's algorithm for univariate Lipschitz functions. The second algorithm, using a piecewise constant upper-bounding function, is designed for multivariate Hölder functions. A proof of convergence is provided for both algorithms. Computational experience is reported on several test functions from the literature.  相似文献   

20.
The purpose of this article is to develop a branch-and-bound algorithm using duality bounds for the general quadratically-constrained quadratic programming problem and having the following properties: (i) duality bounds are computed by solving ordinary linear programs; (ii) they are at least as good as the lower bounds obtained by solving relaxed problems, in which each nonconvex function is replaced by its convex envelope; (iii) standard convergence properties of branch-and-bound algorithms for nonconvex global optimization problems are guaranteed. Numerical results of preliminary computational experiments for the case of one quadratic constraint are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号