首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the homogeneity and stability of single-layer azobenzene LB films on gold, self-assembled monolayers (SAMs) of terminally substituted alkyl thiol, HS(CH2)2-X(X=NH2,OH, COOH and CH2SO3Na, respectively), were used to modify the substrates before LB film deposition. It was found that single-layer C8C3 LB films on these modified substrates were more uniform and stable. Reflecion-Absorption(RA) FTIR measurements on these films indicated that at the LB/SAMs interface, ionic bonds. have formed for the modification with -NH2 while hydrogen bonding occurred for modifications with -OH. -COOH and -SO3Na,respectively. It can be concluded that the ionic or hydrogen bonding at the LB/SAM interface is responsible for the improvement in homogeneity and stability. It was believed that the less defected films after the time aging were most probably due to the ionic bond and hydrogen bonding mentioned above.  相似文献   

2.
In this paper, the fabrication, characterization, and application of unique layer-by-layer (LBL) films of dendrimers and metallic nanoparticles is reported. Silver nanoparticles (d = approximately 20 nm) are produced in solution by sodium citrate reduction and incorporated into thin films with generation 1 and 5 DAB-Am dendrimers (polypropylenimine dendrimers with amino surface groups) by the LBL technique. The resulting nanocomposite films are characterized by UV-visible surface plasmon absorption and atomic force microscopy (AFM) measurements, and employed as substrates for surface-enhanced Raman scattering (SERS) of 2-naphthalenethiol. Through variation of the molecular size (dendrimer generation) and concentration of the cross-linker used, as well as the number of layers produced, the optical properties of several different possible architectures are studied. In the films, Ag nanoparticles are shown to be effectively immobilized and stabilized with increased control over their spacing and aggregation. Moreover, the films are shown to be excellent substrates for SERS measurements, demonstrating significant enhancement capability. As expected, large electromagnetic enhancement of Raman scattering signals is found to be strongly dependent on interparticle coupling between neighboring metallic nanoparticles. Finally, the possibility of detecting SERS signals from architectures with intervening layers between the metal nanoparticles and analyte molecules is explored. It is shown that although there are decreases in intensity with increasing number of intervening layers (as is expected from the distance dependence of SERS), electromagnetic enhancement is still able to function at these distances, thus offering the possibility of developing sensors with external layers that are chemically selective for specific analytes.  相似文献   

3.
Alumina aerogel thin films were formed by a new synthesis route. Sols were prepared by the Yoldas process. Gels were formed by sol evaporation in a few hours. Films were prepared by dip coating glass or alumina substrates into both the sols and the gels. Aerogel films with special morphology were produced for the first time by exchanging the film solvent with acetone after the dip coating, followed by supercritical drying. The morphology of the films, studied by SEM and TEM, consists of fiber-like network of round chains (≈0.1 μm thick), and pores (0.1–0.5 μm in diameter). It is shown that the fibers contain a homogeneous arrangement of sol particles, 2–4 nm in size. Formation of this microstructure can be attributed to phase separation in the alumina-water-acetone system in a 2D film geometry. A conceptual model for the film development is proposed.  相似文献   

4.
高分子共混物梯度相结构形成过程中的界面效应   总被引:5,自引:0,他引:5  
通过在高分子共混物内部引入不同的第三相界面,系统地研究了退火热处理条件下该界面对于共混物梯度相形态形成的影响.对具有一定初始粒径的共混物体系或初始近似为均相的共混体系,在第三相界面的诱导下,均能形成梯度相形态.探讨了诱导界面间距与体系相结构的关系.结果表明,当两个诱导界面间距小于所生成梯度层厚度的两倍时,梯度结构趋于交叠.继续减小诱导界面间距,则梯度结构趋于消失,诱导界面间共混物中分散相粒子快速长大,界面的诱导作用遍布整个样片,证实了我们所提出的“高分子共混物中二维条件下界面诱导加速分散相粒子粗化凝聚”的结论.  相似文献   

5.
Organized oleophobic monolayers of several long chain compounds and steroid derivatives produced on flat solid substrates by spontaneous adsorption from organic solutions are compared with Langmuir—Blodgett (LB) monolayers transferred on identical substrates from the water-air interface. Quantitative infrared ATR and polarized ATR spectroscopy, and wettability measurements are used to correlate the various films and to determine their molecular density and orientation, mode of film-to-surface binding, and other structural characteristics. Formation of oleophobic adsorbed monolayers on a model powder substrate—smooth glass microbeads—is also investigated. It is concluded that, irrespective of the mode of film-to-surface binding (ionic, covalent, or hydrogen bonding), and the nature of the substrate (Ge, Si, ZnSe, glass slides, glass microbeads), saturation of the adsorption leads in all studied systems to the formation of tightly packed and highly oriented monolayers, structurally equivalent to LB monolayers of same or similar compounds deposited on the bare surfaces of the respective substrates. These findings are interpreted in terms of a cooperative surface process leading to aggregation of molecules into a characteristic “monolayer phase.” Significant structural differences may develop in LB built-up films thicker than one monolayer. A mechanism for the formation of covalently bonded silane monolayers is proposed.  相似文献   

6.
聚合物熔体膜在基体表面上的润湿和铺展行为受铺展系数和Hamaker常数影响。对于不能在基体表面上铺展的聚合物膜,当处于其玻璃化温度以上时,聚合物熔体膜将破裂,出现非连续区域。随着体系处于聚合物玻璃化温度以上时间的延长,非连续部分尺寸不断增长,增长速率与表面张力、聚合物粘度、聚合物液滴在基体表面的平衡接触角等因素有关,平衡后聚合物以液滴的形式在基体表面稳定存在。将带功能端基聚合物加入不能在基体表面上铺展的聚合物中,通过修饰聚合物与基体界面或改变聚合物熔体膜的表面张力,可以使原来不能在基体表面铺展的聚合物保持稳定。本文综述了聚合物熔体膜的铺展和润湿动力学研究进展,并归纳了使聚合物熔体膜稳定的方法。  相似文献   

7.
The assembly of two aminosilanes on silicon dioxide surfaces is investigated in this work. It is found that for 3-aminopropyltrimethoxysilane (APS), a smaller concentration of the silane and trace amounts of water in the deposition medium, an optimum time, and a postdeposition thermal curing are necessary to obtain a high primary-amine content. By optimization of deposition conditions, uniform APS films with a primary-amine content of 88.6% were obtained. The dependence of the primary-amine content on the experimental parameters is related to the extent to which amines are lost to hydrogen bonding with each other or with the substrate surface. Whenp-aminophenyltrimethoxysilane (APhS) was used, the primary-amine content in the film reached 100% and the surface morphology was more uniform than that of APS films under the same conditions. This is attributed to the rigid phenyl component in APhS that reduces opportunities for hydrogen bonding. In a comparison of the immobilization capacities of the different aminosilane substrates for pyromellitic dianhydride (PMDA), it is observed that higher primary-amine content favors higher uptake, and the APhS film yields 100% PMDA coverage. We infer that primary-amine content could be a measure of the film morphology and accessibility of the substrate amine groups.  相似文献   

8.
The nonlinear stability analysis of a liquid film composed of two superposed thin layers of immiscible liquids resting on a solid substrate is performed. It is shown that the coupling of van der Waals interactions in the two layers can lead to an autophobic behavior in the form of spinodal decomposition of two planar liquid layers into a system of localized drops divided by almost planar wetting layers. The results of the weakly nonlinear analysis near the instability threshold are confirmed by the numerical solution of a system of two strongly nonlinear evolution equations for the liquid-liquid and liquid-gas interfaces. The kinetics of the drop coarsening at late stages is studied and is found to be close to that reported for a one-layer film. It is also shown that gravity effects can become significant even for very thin two-layer films.  相似文献   

9.
Fabrication of nanoscale polymer‐based devices, especially in biomedical applications, is a challenging process due to requirements of precise dimensions. Methods that involve elevated temperature or chemical adhesives are not practicable due to the fragility of the device components and associated deformation. To effectively fabricate devices for lab‐on‐a‐chip or drug delivery applications, a process is required that permits bonding at low temperatures. The use of carbon dioxide (CO2) to assist the bonding process shows promise in reaching this goal. It is now well established that CO2 can be used to depress the glass transition temperature (Tg) of a polymer, allowing bonding to occur at lower temperatures. Furthermore, it has been shown that CO2 can preferentially soften a polymer surface, which should allow for effective bonding at temperatures even below the bulk Tg. However, the impact of this effect on bonding has not been quantified, and the optimal bonding temperature and CO2 pressure conditions are unknown. In this study, a molecular dynamics model is used to examine the atomic scale behavior of polystyrene in an effort to develop understanding of the physical mechanisms of bonding and to quantify how the process is impacted by CO2. The final result is the identification of a range of CO2 pressure conditions which produce the strongest bonding between PS thin films at room temperature. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

10.
周永正  梁鑫淼  钟虹敏 《色谱》2000,18(1):42-45
 较为系统地研究了聚4甲基5乙烯基噻唑键合硅胶固定相(PMVCAphase)与C18,C8及苯基柱在反相色谱中甲醇水体系下的选择性差别。结果表明,该固定相与常用反相色谱固定相有相似性,显示了一般反相色谱固定相填料的特性;另一方面,又由于其特殊结构,更多地显示了其在反相色谱上的特殊选择性。  相似文献   

11.
The anchoring of nematics on solid substrates depends both on the nature of the substrate and on the wetting conditions. The second point can be shown by wetting a substrate with nematic droplets. We present the results of wetting experiments on SiO films evaporated under oblique incidence and polymer films rubbed in two orthogonal directions. These two kinds of substrates which have respectively C s and C 40 symmetry, induce bistable anchorings. These results are compared with the predictions of a model of anchoring selection developed previously  相似文献   

12.
The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.  相似文献   

13.
Crystallization in n-alkane ultrathin films supported by solid substrates is investigated by molecular dynamics simulation. We consider a relatively short n-alkane, undecane C11H24, on a flat substrate of varied degree of attraction. By the use of the united atom model for n-alkane, we reveal several characteristics of the thin film crystallization. It is found that the crystalline films consist of thin crystalline lamellae where chains are either parallel or perpendicular to the substrate. The relative amount of both types of lamellae changes systematically with film thickness, substrate attraction, and crystallization temperature; thicker films on substrates of higher attraction comprise dominant parallel lamellae, while thinner films on substrates of weaker attraction prefer the perpendicular lamellae. A clue to the morphogenesis is suggested to be the marked preference of the chain ends to locate on the free surface and on the effectively repulsive substrate. It is also shown that the perpendicular crystals, both on the free surface and on the solid substrate, have melting points higher than that of the bulk.  相似文献   

14.
A novel wedge‐shaped compound containing two diacetylene tails, namely, methyl 3,5‐bis(trideca‐2,4‐diyn‐1yloxyl)benzoate (DDABM), was synthesized. As shown by UV/Vis spectroscopy this compound can be polymerized under UV irradiation. The crystalline structure of DDABM was investigated by grazing‐incidence wide‐angle X‐ray diffraction on oriented crystalline films deposited on PTFE‐rubbed silicon wafer substrates. Furthermore, the spherulites formed in thicker films were analyzed by wide‐angle X‐ray diffraction. A molecular packing model of DDABM based on the X‐ray diffraction data is proposed. The diacetylene units are oriented along a defined lattice direction with a reticular distance of 4.85 Å, which fulfills the requirements for topochemical polymerization. It was observed that UV polymerization does not affect the phase behavior of the compound, but mainly alters its optical properties.  相似文献   

15.
Electrophoretic deposition (EPD) method has been developed for the deposition of thin films of polyacrylic acid (PAA). This method allowed the formation of uniform films of controlled thickness on conductive substrates. It was shown that PAA can be used as a common dispersing agent suitable for charging and EPD of various materials, such as multiwalled carbon nanotubes, halloysite nanotubes, MnO(2), NiO, TiO(2) and SiO(2). The feasibility of EPD of composite films containing the nanotubes and oxide particles in a PAA matrix has been demonstrated. The kinetics of deposition and deposition mechanisms were investigated and discussed. The films were studied by thermogravimetric analysis, differential thermal analysis, X-ray diffraction and scanning electron microscopy. The results indicated that film thickness and composition can be varied. Obtained results pave the way for the fabrication of PAA and composite films for biomedical, electrochemical and other applications.  相似文献   

16.
It is suggested that attaching chromopores to a conducting polymer chain anchored to a semiconductor surface is a good strategy for development of dye-sensitized solar cells. A model system that illustrates this principle is constructed by bonding mercurochrome to poly(vinyl alcohol) films adsorbed onto nanocrystalline TiO2 films. The dye-polymer structure enables transport of electrons (released in excitation of the dye) along the polymer chain to TiO2 as states in the lowest unoccupied molecular orbital of the polymer. By attaching several chromopores to a polymer chain, panchromatic sensitization can be achieved in principle by avoiding concentration quenching and the insulation by thick dye layers.  相似文献   

17.
Transparent nanoporous thin films with low refractive index (1.23–1.25) were produced on glass substrates by application of a formulation based on a silicon dioxide sol into which two organic compounds, an oligoether based on ethylene oxide and a nonionogenic surfactant, are introduced. It is shown that the antireflection capacity of the nanoporous coating can be substantially raised at comparatively low concentrations of silicon dioxide and organic additives in the sol by making higher the rate at which the formulation is applied to the substrate.  相似文献   

18.
Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca. 100 nm. It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk. In this paper, we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining, bulk-like layer in the film. Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide, where divergent thickness dependences are observed.  相似文献   

19.
In this paper, we report the results of total internal reflection microscopy investigations of the interaction of two types of microorganisms: Saccharomyces cerevisiae and Escherichia coli with substrates. It is shown that with this method qualitative and quantitative information about cells-substrate interaction can be obtained. One can easily make a difference between attached and non-attached as well as between dead and alive cells, and more generally can follow the dynamics of the process of cells' attachment to substrates. Quantitative information about the cell size and cell-substrate distance is obtained by using a model in which yeast cells and bacteria are approximated by ellipsoids, and multiple reflections of the evanescent waves between the cells and the substrate are neglected.  相似文献   

20.
Electroconduction of anodic oxide films on zirconium in 0.1 M Na2SO4 is studied. The films are formed in a galvanostatic regime on single-crystal and polycrystalline iodide-refined zirconium, as well as on electrodes manufactured from a rod obtained by hot extrusion of zirconium iodide melted in an arc furnace and from a plate of iodide-refined zirconium of the I-100 brand. Electrophysical properties of the films are compared on the basis of a model of Frenkel defects, which constitute a system of noninteracting donor centers in the oxide, and a model that describes the formation of a space charge from the donor centers in the oxide (exponential distribution of traps over the films’ bulk). It is shown that experimental current-voltage curves cannot be described by a single model throughout the entire voltage range. At low voltages (<12 V), the Frenkel model is more preferable. In terms of this model, the experimental results can be linearized in the lnI vs. U 1/2 coordinates. At higher voltages, it is more convenient to describe experimental data within the space-charge model in the I vs. U2 or ln(I/U) vs. U coordinates. It is discovered that the technique, which is used for preliminary metallurgical treatment, and the structure of the substrate metal affect parameters of electron conduction in anodic oxide films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号