首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeThe aim of this work is to implement real-time 3D MR thermometry for high intensity focused ultrasound (HIFU) monitoring.MethodsVolumetric MR thermometry was implemented based on a 3D echo-shifted sequence with short TR to improve temperature sensitivity. The 3D acquisition was accelerated in two phase encoding directions with controlled aliasing in volumetric parallel imaging (CAIPIRINHA). Image reconstruction was run in an open source reconstruction platform (Gadgetron).ResultsPhantom experiments showed the proposed volumetric thermometry was comparable to the fiber optical thermometer. In-vivo animal experiments in rabbit thigh showed that the temperature error before and after 4× acceleration was less than 0.65 °C. Finally, real-time 3D thermometry with temporal resolution ~3 s and spatial resolution 2 × 2 × 5 mm3 (spatial coverage 192 × 192 × 80 mm3) was achieved with Gadgetron reconstruction.ConclusionReal-time temperature monitoring was achieved in-vivo by using parallel imaging accelerated 3D echo-shifted sequence with Gadgetron reconstruction.  相似文献   

2.
PurposeComputed tomography (CT) imaging is the standard to assess interstitial lung disease. Magnetic resonance (MR) is potentially advantageous due to superior tissue characterization and better assessment of blood flow dynamics. This study aimed to evaluate idiopathic pulmonary fibrosis (IPF) using prototype 4D Stack of Stars GRE (StarVIBE) MR and compare it to CT.MethodThis IRB-approved prospective study included 13 patients [5F:8M; average age 66 ± 8.1 years] with pulmonary fibrosis, and 12 healthy controls [3F:9M; average age 55 ± 3.6 years]. MR of the chest included noncontrast steady-state free precession imaging (SSFP) and free-breathing 4D StarVIBE sequence with intravenous contrast administration up to 160 s. The images were assessed for quality and artifacts. The image resolution was evaluated based on the visibility of the smallest bronchi, vessels, lymph nodes, and pleural fissures. Independent assessment of reticulation, ground-glass opacity, and traction bronchiectasis was performed and compared to CT.ResultsThe StarVIBE images had fewer artifacts and higher spatial resolution. The findings associated with IPF were significantly better seen with StarVIBE, with superior CT correlation.ConclusionContrast-enhanced free-breathing StarVIBE MR can generate high quality images with good correlation to CT in patients with IPF, and with high spatial and temporal resolution to generate rapid sequential dynamic images.  相似文献   

3.
It is generally a challenging task to reconstruct dynamic magnetic resonance (MR) images with high spatial and high temporal resolutions, especially with highly incomplete k-space sampling. In this work, a novel method that combines a non-rigid image registration technique with sparsity-constrained image reconstruction is introduced. Employing a multi-resolution free-form deformation technique with B-spline interpolations, the non-rigid image registration accurately models the complex deformations of the physiological dynamics, and provides artifact-suppressed high spatial-resolution predictions. Based on these prediction images, the sparsity-constrained data fidelity-enforced image reconstruction further improves the reconstruction accuracy. When compared with the k-t FOCUSS with motion estimation/motion compensation (MEMC) technique on volunteer scans, the proposed method consistently outperforms in both the spatial and the temporal accuracy with variously accelerated k-space sampling. High fidelity reconstructions for dynamic systolic phases with reduction factor of 10 and cardiac perfusion series with reduction factor of 3 are presented.  相似文献   

4.
许多磁共振成象的应用场合需要利用正交双通道来采集一个具有时间和空间分辨力的对象序列。传统的基于Fourier变换的成象方法,一方面,图象序列的重建时各帧图象是独立地进行重建的,因而图象序列的时间分辨力受到编码的限制;另一方面,来自两个通道之间的Fartley变换的磁共振成象技术。  相似文献   

5.
高欠采倍数的动态磁共振图像重建具有重要意义,是同时实现高时间分辨率和高空间分辨率动态对比度增强成像的重要环节.本研究提出一种结合黄金角变密度螺旋采样、并行成像和基于同伦l0范数最小化的压缩感知的图像重建的三维动态磁共振成像方法.黄金角变密度螺旋采样轨迹被用来连续获取k空间数据,具有数据采集效率高、对运动不敏感等优点.在重建算法中,将多线圈稀疏约束应用于时间总变分域,使用基于l0范数最小化的非线性重建算法代替传统的l1范数最小化算法,进一步提高了欠采样率.仿真实验和在体实验表明本文所提的方法在保持图像质量的同时,也可以实现较高的空间分辨率和时间分辨率,初步验证了基于同伦l0范数最小化重建在三维动态磁共振成像上的优势和临床价值.  相似文献   

6.
The partial separability (PS) of spatiotemporal signals has been exploited to accelerate dynamic cardiac MRI by sampling two datasets (training and imaging datasets) without breath-holding or ECG triggering. According to the theory of partially separable functions, the wider the range of spatial frequency components covered by the training dataset, the more accurate the temporal constraint imposed by the PS model. Therefore, it is necessary to develop a new sampling scheme for the PS model in order to cover a wider range of spatial frequency components. In this paper, we propose the use of radial sampling trajectories for collecting the training dataset and Cartesian sampling trajectories for collecting the imaging dataset. In vivo high resolution cardiac MRI experiments demonstrate that the proposed data sampling scheme can significantly improve the image quality. The image quality using the PS model with the proposed sampling scheme is comparable to that of a commercial method using retrospective cardiac gating and breath-holding. The success of this study demonstrates great potential for high-quality, high resolution dynamic cardiac MRI without ECG gating or breath-holding through use of the PS model and the novel data sampling scheme.  相似文献   

7.
Peripheral MR angiography requires high resolution and arterial contrast. Neither can be obtained simultaneously due to the short arterial phase of the contrast agent. To improve temporal resolution, keyhole imaging was developed, which combines high resolution and arterial k-spaces at the time of image acquisition. Here, a related approach is introduced for image post-processing in the Fourier domain. It is demonstrated that simple substitution of the central k-space with low-resolution data leads to severe distortion. Hence, a dedicated calculation scheme is necessary for composite k-space post-processing. A solution is presented for high-resolution arterial peripheral MR angiography that uses subtraction of venous intensities from the central high-resolution k-space. The calculations in the Fourier domain do not require interpolations between the different resolutions. High-resolution steady-state MR angiography, which exhibits contrast-enhanced arteries and veins at an isotropic resolution of 0.65 mm, and standard resolution arterial first-pass MR angiography were combined to obtain images with the resolution of the steady-state images and arterial contrast. Numerical simulations on software phantoms are presented. The operation of the method is demonstrated in five patients.  相似文献   

8.
Magnetic resonance imaging has been introduced to study flow in microchannels using pure phase spatial encoding with a microfabricated parallel-plate nuclear magnetic resonance (NMR) probe. The NMR probe and pure phase spatial encoding enhance the sensitivity and resolution of the measurement. In this paper, 1H NMR spectra and images were acquired at 100 MHz. The B1 magnetic field is homogeneous and the signal-to-noise ratio of 30 μl doped water for a single scan is 8×104. The high sensitivity of the probe enables velocity mapping of the fluids in the micro-channel with a spatial resolution of 13×13 μm. The parallel-plate probe with pure phase encoding permits the acquisition of NMR spectra; therefore, chemical shift resolved velocity mapping was also undertaken. Results are presented which show separate velocity maps for water and methanol flowing through a straight circular micro-channel. Finally, future performance of these techniques for the study of microfluidics is extrapolated and discussed.  相似文献   

9.
Three dimensional bilateral imaging is the standard for most clinical breast dynamic contrast-enhanced (DCE) MRI protocols. Because of high spatial resolution (sRes) requirement, the typical 1–2 min temporal resolution (tRes) afforded by a conventional full-k-space-sampling gradient echo (GRE) sequence precludes meaningful and accurate pharmacokinetic analysis of DCE time-course data. The commercially available, GRE-based, k-space undersampling and data sharing TWIST (time-resolved angiography with stochastic trajectories) sequence was used in this study to perform DCE-MRI exams on thirty one patients (with 36 suspicious breast lesions) before their biopsies. The TWIST DCE-MRI was immediately followed by a single-frame conventional GRE acquisition. Blinded from each other, three radiologist readers assessed agreements in multiple lesion morphology categories between the last set of TWIST DCE images and the conventional GRE images. Fleiss’ κ test was used to evaluate inter-reader agreement. The TWIST DCE time-course data were subjected to quantitative pharmacokinetic analyses. With a four-channel phased-array breast coil, the TWIST sequence produced DCE images with 20 s or less tRes and ~ 1.0×1.0×1.4 mm3 sRes. There were no significant differences in signal-to-noise (P=.45) and contrast-to-noise (P=.51) ratios between the TWIST and conventional GRE images. The agreements in morphology evaluations between the two image sets were excellent with the intra-reader agreement ranging from 79% for mass margin to 100% for mammographic density and the inter-reader κ value ranging from 0.54 (P<.0001) for lesion size to 1.00 (P<.0001) for background parenchymal enhancement. Quantitative analyses of the DCE time-course data provided higher breast cancer diagnostic accuracy (91% specificity at 100% sensitivity) than the current clinical practice of morphology and qualitative kinetics assessments. The TWIST sequence may be used in clinical settings to acquire high spatiotemporal resolution breast DCE-MRI images for both precise lesion morphology characterization and accurate pharmacokinetic analysis.  相似文献   

10.
In this paper, we have presented a numerical analysis of the stability of optical bullets (2 + 1), or spatiotemporal solitons (2 + 1), in a planar waveguide with cubic–quintic nonlinearity. The optical spatiotemporal solitons are the result of the balance between the nonlinear parameters, of dispersion (dispersion length, L D) and diffraction (diffraction length, L d) with temporal and spatial auto-focusing behavior, respectively. With the objective of ensure the stability and preventing the collapse or the spreading of pulses, in this study we explore the cubic–quintic nonlinearity with the optical fields coupled by cross-phase modulation and considering several values for the non linear parameter α We have shown the existence of stable light bullets in planar waveguide with cubic–quintic nonlinearity through the study of spatiotemporal collisions of the light bullets.  相似文献   

11.
High-resolution imaging techniques using noninvasive modalities such as magnetic resonance (MR) imaging are being pursued as in vivo cancer screening techniques in an attempt to eliminate the invasive nature of surgical biopsy. When acquiring high-resolution MR images for tissue screening, image fields of view have in the past been limited by the matrix sizes available in conventional MR scanners. We present here a technique that uses aliasing to produce high resolution images with larger matrix sizes than are currently available. The image is allowed to alias in both the frequency encoding and phase encoding dimensions, and the individual, aliased fields of view are recovered by Hadamard encoding methods. These fields may then be tiled to obtain a composite image with high spatial resolution and a large field of view. The technique is demonstrated using two-dimensional and three-dimensional in vivo imaging of the human brain and breast.  相似文献   

12.
对时间分辨电子显微镜进行了数值模拟。通过求解从样品透射出来的电子在静态磁场和动态电场的混合场中的运动,评价时间分辨电子显微镜的动态时空特性。根据该数值模拟,时间分辨电子显微镜能够在荧光屏上获得样品在不同时刻的6幅显微分幅图像。  相似文献   

13.
Pure rotational CARS spectra of N2, O2, air, and CO have been obtained using excimer laser pumped dye-lasers. The combination of the folded BOXCARS phase matching geometry with the broad-band laser multiplex method allowed high spatial and temporal resolution. Species and concentration analysis as well as thermometry up to 700 K is demonstrated, and possible applications are discussed.  相似文献   

14.
Spatial Modulation of Magnetization is shown to provide a means of estimating perceived spatial resolution directly in vivo. On the first magnetic resonance system tested, resolution in conventional spin echo images was found to be stability limited in the phase encoding direction and voxel limited (via the Nyquist sampling theorem) in the frequency encoding direction both in vitro and in vivo. As the voxel size approaches half the stripe separation, fringes of resolved and unresolved stripes are formed across the image. This phenomenon is explained and described mathematically. On a second magnetic resonance scanner, resolution in the phase encoding direction of fast spin echo images with centrically ordered phase encoding is shown to be voxel limited in substances with long T2, with poorer resolution in substances with short T2. Resolution in fast spin echo images with linearly ordered phase encoding was shown to be voxel limited in the phase encoding direction.  相似文献   

15.

Background

Using magnetic resonance (MR) imaging for navigating catheters has several advantages when compared with the current “gold standard” modality of X-ray imaging. A significant drawback to interventional MR is inferior temporal and spatial resolutions, as high spatial resolution images cannot be collected and displayed at rates equal to X-ray imaging. In particular, passive MR catheter tracking experiments that use positive contrast mechanisms have poor temporal imaging rates and signal-to-noise ratio. As a result, with passive methods, it is often difficult to reconstruct motion artifact-free tracking images from areas with motion, such as the thoracic cavity.

Methods

In this study, several accelerated MR acquisition strategies, including parallel imaging and compressed sensing (CS), were evaluated to determine which method is most effective at improving the frame rate and passive detection of catheters in regions of physiological motion. Device navigation was performed both in vitro, through the aortic arch of an anthropomorphic chest phantom, and in vivo from the femoral artery, up the descending aorta into the supra-aortic branching vessels in canines.

Results and Discussion

The different parallel imaging methods produced images of low quality. CS with a two-fold acceleration was found to be the most effective method for generating tracking images, improving the image frame rate to 5.2 Hz, while maintaining a relatively high in-plane resolution. Using CS, motion artifact was decreased and the catheters were visualized with good conspicuity near the heart.

Conclusions

The improvement in the imaging frame rate by image acceleration was sufficient to overcome motion artifacts and to better visualize catheters in the thoracic cavity with passive tracking. CS preformed best at tracking. Navigation with passive MR catheter tracking was demonstrated from the femoral artery to the carotid artery in canines.  相似文献   

16.
The traditional ultrafast electric vacuum devices are usually based on the mechanism of photoelectric conversion, and their performance is restricted by factors such as material response and space-charge effect. It is difficult for the devices like microchannel plate framing cameras, Dilation X-ray Imager (DIXI) , streak cameras to achieve high temporal resolution (100 fs similar to 1 ps) and spatial resolution (similar to mu m) two-dimensional imaging. Ultrafast imaging technology based on photorefractive effect is a new ultrafast diagnostic technology, which has the advantages of high spatiotemporal resolution, all-optical, all and anti radiation. The nonequilibrium carrier lifetime of low temperature grown AlGaAs (LT-AlGaAs) can reach ps-level. The Ultrafast Response Chip (URC) made of LT-AlGaAs has the characteristics of high temporal resolution, meanwhile, good spatial performance is the other key factor for its application. In this paper, the spatial performance of LT-AlGaAs URC is experimentally studied using X-ray, generated by high-energy nanosecond pulsed laser-produced plasma, as the signal. The results show that the URC has the ability of high spatial resolution and large-scale imaging in the X-ray energy dynamic range of 120: 1. The optimal spatial resolution is >= 35 1p/mm (R) MTF = 0.1, and the imaging frame can reach 6.7 mm x 6.7 mm. The results further verify the feasibility of ultrafast diagnostic technology based on photorefractive materials. In the future, LT-AIGaAs URC will be combined with ultrafast framing technologies such as dispersion framing and polarization chirp framing to realize multi-frames and high spatiotemporal resolution two-dimensional imaging.  相似文献   

17.
Theoretical and experimental studies on the localization of heated objects by the methods of acoustic brightness thermometry are carried out. It is demonstrated that, in the case of using a single focusing array, the spatial localization of heated objects depends on the size of the source. One-and two-dimensional tomography of a real heated source is performed by an acoustic thermal tomograph with a focusing array. The results agree well with the data calculated according to the suggested model. The applicability of correlation focusing acoustic brightness thermometry to the localization of a heated source is investigated both theoretically and experimentally. It is demonstrated that a considerable increase in the spatial resolution of the method leads to a significant loss in sensitivity.  相似文献   

18.
Magnetic resonance angiographic evaluation of the intracranial vasculature has been predominantly carried out using conventional angiographic techniques such as time of flight and phase contrast sequences. These techniques have good spatial resolution but lack temporal resolution. Newer faster angiographic techniques have been developed to circumvent this limitation. Elliptical centric time-resolved imaging of contrast kinetics (EC-TRICKS) is one such technique which has combined the use of elliptical centric ordering of the k-space with multiphase 3D digital subtraction MR angiogram (MRA) to achieve excellent temporal resolution of the arterial and venous circulations. Its applications have been mainly in the peripheral vasculature. We report the use of this technique in a case of a high-flow, direct carotid-cavernous fistula to demonstrate its potential in intracranial MR angiography.  相似文献   

19.
Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique.  相似文献   

20.
Parallel magnetic resonance imaging (pMRI) and compressed sensing (CS) have been recently used to accelerate data acquisition process in MRI. Matrix inversion (for rectangular matrices) is required to reconstruct images from the acquired under-sampled data in various pMRI algorithms (e.g., SENSE, GRAPPA) and CS. Singular value decomposition (SVD) provides a mechanism to accurately estimate pseudo-inverse of a rectangular matrix. This work proposes the use of Jacobi SVD algorithm to reconstruct MR images from the acquired under-sampled data both in pMRI and in CS. The use of Jacobi SVD algorithm is proposed in advance MRI reconstruction algorithms, including SENSE, GRAPPA, and low-rank matrix estimation in L + S model for matrix inversion and estimation of singular values. Experiments are performed on 1.5T human head MRI data and 3T cardiac perfusion MRI data for different acceleration factors. The reconstructed images are analyzed using artifact power and central line profiles. The results show that the Jacobi SVD algorithm successfully reconstructs the images in SENSE, GRAPPA, and L + S algorithms. The benefit of using Jacobi SVD algorithm for MRI image reconstruction is its suitability for parallel computation on GPUs, which may be a great help in reducing the image reconstruction time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号