首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Softwood and hardwood bleached kraft pulps (SBKP and HBKP, respectively) and highly crystalline native celluloses such as algal, tunicate, bacterial and cotton lint celluloses were dissolved in 8 % (w/v) LiCl/N,N-dimethylacetamide (DMAc) after ethylenediamine (EDA) pretreatment. Complete dissolution of SBKP and other highly crystalline native celluloses in 8 % LiCl/DMAc was achieved after solvent exchange from EDA to DMAc through methanol. Neutral sugar composition analysis showed no significant differences between the original and EDA-treated pulps. A combination of size-exclusion chromatography and multi-angle laser light scattering (SEC–MALLS) was used to analyze the cellulose solutions after dilution to 1 % (w/v) LiCl/DMAc. The 0.05 % (w/v) solutions of highly crystalline cellulose in 1 % (w/v) LiCl/DMAc contained entangled molecules, and therefore 0.025 % (w/v) cellulose solutions in 1 % (w/v) LiCl/DMAc were used in the SEC–MALLS analysis to obtain reliable conformation plots (or double-logarithmic plots of molecular mass vs. root-mean-square radius). All the cellulose samples except SBKP gave conformation plots with slope values of 0.56–0.57, showing that these cellulose molecules had random-coil conformations. In contrast, SBKP gave a slope value of 0.35, indicating that some branched structures were present in the high-molecular-mass fraction. Double-logarithmic plots of the reduced viscosities of the cellulose solutions in 1 % (w/v) LiCl/DMAc versus the molecular mass were linear, except for SBKP, also suggesting the presence of anomalous cellulose structures in SBKP.  相似文献   

2.
Various cellulose and pulp samples including softwood bleached kraft pulp (SBKP) were dissolved in 8% lithium chloride/1,3-dimethyl-2-imidazolidinone (LiCl/DMI) and 8% LiCl/N,N-dimethylacetamide (DMAc), and the obtained solutions were subjected to size-exclusion chromatographic analysis with multi-angle light scattering detection (SEC-MALLS). Although SBKP was not completely soluble in 8% LiCl/DMAc, 1% LiCl/DMI always gave a clear solution of SBKP without centrifugation. Molecular mass (MM) and MM distribution measurements using 1% LiCl/DMI as an eluent for the SEC-MALLS analysis revealed that SBKP had MM higher than those of the other cellulose and pulp samples at the same elution volume. The slope of the conformation plots for SBKP showed an anomalously low value of 0.41, while those for other cellulose and pulp samples were in the range of 0.57–0.59, which corresponds to the normal random coil conformations. These results indicate that some compact structures like branches or cross-linkages other than molecular-dispersed states are present in the high MM region of SBKP, which can be detected when the LiCl/DMI solvent system is used as the solvent as well as the eluent for the SEC-MALLS analysis. On the other hand, no such structures were observed for the other cellulose and pulp samples including softwood bleached sulfite pulps. Thus, the compact structures present in SBKP are likely to be susceptible to acid treatments.  相似文献   

3.
Most celluloses are soluble in 8 mass % lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) and/or 8 mass % LiCl/1,3-dimethyl-2-imidazolidinone (LiCl/DMI) with solvent-exchange treatment from water to DMAc or DMI through acetone. In this study, the residual DMAc or DMI adsorbed on celluloses after the solvent-exchange and then vacuum-drying at 60 °C for 48 h was determined by UV spectroscopy and elementary analysis. Significant amounts of DMI or DMAc remain in the solvent-exchanged celluloses even after vacuum drying: about 1.2 mmol/g and 1.0 mmol/g for DMI and DMAc, respectively. Thus, corrections of molecular-mass parameters of celluloses, which were reported in previous literatures based on the assumption that no residual amides are present in the solvent-exchanged and then vacuum-dried celluloses, are needed.  相似文献   

4.
Norway spruce (Picea abies) cellulose samplesdissolved in lithium chloride/N,N-dimethyl-acetamide(LiCl/DMAc) covering a wide range of average molecular weights were analyzed bysize exclusion chromatography (SEC) and multi-angle laser light detection(MALLS). The molecular weight distribution of the samples was compared to themolecular weight distribution of cotton linters cellulose samples. To obtaincomplete dissolution of high-molecular-weight wood cellulose, previouslypublished procedures for dissolving cellulose in LiCl/DMAc were modified. SECseparation was performed using macroporous monodisperse polymer particles ascolumn matrix. The refractive index increment (dn/dc) forcellulose in 0.5% LiCl/DMAc was found to be 0.104. The radius of gyration,RG, of cellulose in 0.5% LiCl/DMAc depended on the molecular weight,M, according to the relation RG M0.55. Celluloseprepared from sprucewood by the sulfite cooking process had a broad molecularweight distribution compared to cotton linters cellulose.  相似文献   

5.
Linter cellulose was suspended in water and oxidized by the NaClO/NaBr/2,2,6,6-tetramehylpiperidine-1-oxy radical (TEMPO) system at pH 10.5 (TEMPO-mediated oxidation), and the oxidized products were separated into several fractions by filtration and centrifugation, depending on their particle sizes and apparent water-solubility. The major fraction (>ca. 80 mass % of the original linter cellulose) is the filter paper-trapped fibers, which can form inter-fiber hemiacetal linkages when handsheets are prepared thereof. Size-exclusion chromatographic analysis with multi-angle laser light scattering detection (SEC–MALLS) of these fibrous fractions dissolved in 0.5% LiCl/N,N-dimethylacetamide (DMAc) showed that some depolymerization occurred on cellulose chains during the TEMPO-mediated oxidation. On the other hand, the apparently water-soluble fractions (<ca. 20 mass % of the original linter cellulose) in the TEMPO-oxidized linter cellulose consisted of small amounts of colloidal particles having the cellulose I crystal structure, which came off from linter cellulose by the TEMPO-mediated oxidation and were mixed in the apparently water-soluble fraction even after filtration using 0.45 μm membrane. The presence of such colloidal cellulose crystals in the water-soluble fractions of the TEMPO-oxidized linter cellulose brings about anomalous bimodal SEC-elution patterns and extremely large molecular-mass values calculated from the SEC–MALLS data. Truly water-soluble cellouronic acid and/or over-oxidized compounds having glucuronic acid and hexeneuronic acid units are also present in the water-soluble fractions.  相似文献   

6.
Three-dimensionally shaped cellulosic objects were produced via a two-step procedure: swelling of softwood pulp (93 % cellulose; 4.5 % hemicellulose; 54 % crystallinity) in DMAc/LiCl followed by moulding. Swollen cellulose pulp in the form of gel was solidified with two different anti-solvents: distilled water and a combination of 2-propanol and deionized water. The solid cellulose material was further moulded in a custom-built prototype mould. The role of the anti-solvent was to solidify the swollen cellulose fibres and prepare mouldable solid specimens. The anti-solvent was chosen based on the following criteria, viz., recoverability, stable chemical reactivity, availability, cost and previous research in the anti-solvent area. The choice of solidification solvent had a great influence on the structure and mechanical properties of the final cellulose material. Results of different characterisation techniques showed that when the cellulose gel was washed with distilled water, it had a significantly higher number of lithium cations (ICP-MS and Raman), amorphous structure (X-ray) and lower mechanical properties (nanoindentation) compared to samples washed with a combination of 2-propanol and deionized water. An increase in viscosity as previously reported and changes in the NMR and IR spectra of DMAc upon LiCl suggested the formation of an ion-dipol complex, where lithium cations reside adjacent to the oxygen of the carbonyl group of DMAc. The formed macrocation [DMAcn + Li]+ was preserved between cellulose chains in cellulose specimens washed with distilled water and had an essential role in the disruption of initial bonds, thus enhancing mouldability. Electron microscopy (FE-SEM) studies showed that the surface of cellulose after mechanochemical treatment was rough with no presence of fibres.  相似文献   

7.
Bio-based films were prepared from LiCl/DMAc solutions containing sisal cellulose esters (acetates, butyrates and hexanoates) with different degrees of substitution (DS 0.7–1.8) and solutions prepared with the cellulose esters and 20 wt% sisal cellulose. A novel approach for characterizing the surface morphology utilized field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and contact angle analysis. XPS and ToF-SIMS were a powerful combination while investigating both the ester group distribution on the surface and effects of cellulose content on the film. The surface coverage by ester aliphatic chains was estimated using XPS measurements. Fibrous structures were observed in the FE-SEM images of the cellulose and bio-based films, most likely because the sisal cellulose chains aggregated during dissolution in LiCl/DMAc. Therefore, the cellulose aggregates remained after the formation of the films and removal of the solvent. The XPS results indicated that the cellulose loading on the longer chain cellulose esters films (DS 1.8) increased the surface coverage by ester aliphatic chains (8.2 % for butyrate and 45 % for hexanoate). However, for the shortest ester chains, the surface coverage decreased (acetate, 42 %). The ToF-SIMS analyses of cellulose acetate and cellulose hexanoate films (DS 1.8) revealed that the cellulose ester groups were evenly distributed across the surface of the films.  相似文献   

8.
To further improve the physiological properties of textiles, solutions of low degree of substitution cellulose derivatives, i.e. carbamates and acetates, containing finely dispersed sub-micron scaled NaCl particles (d16 = 269 nm, d50 = 275 nm, d84 = 283 nm) serving as templates were coated on textiles. By wet milling of NaCl particles in a 12.5 wt% solution of polyvinylpyrrolidone in dimethylacetamide (DMAc) as dispersing agent, a stable, processable dispersion was obtained, which could be diluted with LiCl/DMAc without any flocculation. For the preparation of the coating solution, the NaCl/DMAc dispersions were diluted with LiCl/DMAc and added to the DMAc-swollen cellulose derivatives. After application onto the textiles, the NaCl particle-containing coating had to be coagulated directly after application in a solvent bath, otherwise slow replacement of hygroscopic DMAc by water lead to the dissolution and recrystallisation of NaCl on the surface of the coating, thereby changing particle distribution and diameter. The solvent for the coagulation bath was chosen in a way that it allows for a high coagulation speed for the cellulose derivative matrix while possessing a low solubility product for NaCl (e.g., 2-propanol) in order to prevent any loss of the NaCl particles. Due to the highly porous structure created, increased water retention values and increased water vapour permeabilities were observed under preservation of the number of accessible hydroxyl groups of the cellulose derivatives. Both the templated and non-templated coatings could be processed on various textile substrates (e.g., on PET and PP). An important feature of these new materials, i.e. the possibility to apply an antibacterial finish, is discussed within the context of a potential use in the medical sector.  相似文献   

9.
Various cellulose II samples, ball-milled native celluloses and ball-milled wood saw dust were subjected to 2,2,6,6-tetramethypyperidine-1-oxyl radical (TEMPO)-mediated oxidation to prepare cellouronic acid Na salts (CUAs). The TEMPO-oxidized products obtained were analyzed by 13C-NMR and size-exclusion chromatography (SEC). When the cellulose II samples with degrees of polymerization (DP) of 220–680 were used as the starting materials, the CUAs obtained had weight-average DP (DPw) values of only 38–79. Thus, significant depolymerization occurs on cellulose chains during the TEMPO-mediated oxidation. These DP values of CUAs correspond to the cellulose II crystal sizes along the chain direction in the original cellulose II samples, but not necessarily to their leveling-off DP values. CUAs can be obtained also from ball-milled native celluloses in good yields by TEMPO-mediated oxidation, although their DPw values are lower than about 80. On the other hand, CUA with DPw of about 170 was obtained from ball-milled wood saw dust.  相似文献   

10.
The water content in the binary systemN,N-dimethylacetamide/lithium chloride (DMAc/LiCl), acommon cellulose solvent, has been proven to be a crucial parameter. A quickdetermination of water content in DMAc based on the solvatochromism of aUV-active betain probe dye has been developed and validated. An analogousmethod, based on the solvatochromic fluorescence shift ofZelinskij's dye, which strongly depends on thesolventpolarity, was established for water determination in DMAc containing LiCl.Precise physicochemical data of the system DMAc/LiCl, such as density,viscosity, and conductivity, have been obtained. The limiting solubility forLiCl in absolute DMAc is 8.46 wt%. As shown by lightscattering experiments, water in DMAc/LiCl induces aggregation upon standingforlonger periods of time, which is even more prominent for diluted solutions andthose having a poor state of dissolution.  相似文献   

11.
All-cellulose composites were prepared by partly dissolving microcrystalline cellulose (MCC) in an 8.0 wt% LiCl/DMAc solution, then regenerating the dissolved portion. Wide-angle X-ray scattering (WAXS) and solid-state 13C NMR spectra were used to characterize molecular packing. The MCC was transformed to relatively slender crystallites of cellulose I in a matrix of paracrystalline and amorphous cellulose. Paracrystalline cellulose was distinguished from amorphous cellulose by a displaced and relatively narrow WAXS peak, by a 4 ppm displacement of the C-4 13C NMR peak, and by values of T2(H) closer to those for crystalline cellulose than disordered polysaccharides. Cellulose II was not formed in any of the composites studied. The ratio of cellulose to solvent was varied, with greatest consequent transformation observed for c < 15%, where c is the weight of cellulose expressed as % of the total weight of cellulose, LiCl and DMAc. The dissolution time was varied between 1 h and 48 h, with only small additional changes achieved by extension beyond 4 h.  相似文献   

12.
Three groups of cellulose II samples, 20% NaOH-treated native celluloses (M-native celluloses), commercial regenerated celluloses and those treated with 20% NaOH (M-regenerated celluloses), were subjected to dilute acid hydrolysis at 105 °C to obtain so-called leveling-off degrees of polymerization (LODP). Molecular mass parameters of the acid-hydrolyzed products were analyzed by SEC-MALLS using 1% LiCl/DMAc as an eluent. The LODP values were in the order of M-native celluloses ≅ M-regenerated celluloses > regenerated celluloses. The LODP values of M-regenerated celluloses are 1.5–1.7 times as much as those of the regenerated celluloses; the cellulose II crystallites in regenerated celluloses increase in size to the longitudinal direction by the alkali treatment and the successive acid hydrolysis at 105 °C. This increase in the longitudinal crystal sizes might primarily occur during acid hydrolysis. All the acid-hydrolyzed products had bimodal SEC elution patterns, i.e. the predominant high-molecular-mass and minor low-molecular-mass components, the latter of which corresponded to DP 20.  相似文献   

13.
The solubility behavior of O-methyl cellulose (MC) in water was investigated in terms of the distribution of substituents along the cellulose chain as well as in the anhydroglucose (AHG) units. For this purpose, three different types of MC samples were prepared by respective homogeneous reaction, i.e.. (i) methylation of cellulose acetate (CA) prepared from cellulose triacetate (CTA), followed by deacetylation, (ii) methylation of CA prepared by direct acetylation of cellulose in a 10% LiCl–dimethylacetamide (DMAc) solution, followed by deacetylation, and (iii) methylation of cellulose with dimethyl sulfate in a 10% LiCl–DMAc solution. Their water solubility was compared with that of MC samples prepared by the alkali cellulose process, i.e., by the heterogeneous reaction, including commercial products. It was found that water-soluble MC samples prepared by the alkali cellulose process exhibit a thermally-reversible sol-gel transition in aqueous solution, but all of the MC samples preapred homogeneous reactions show a normal phase separation in aqueous solution. This result gives a direct support for the consideration that the highly substituted glucose sequences present in the commercial MC act as “crosslinking loci” on warming. The distribution of substituents in the AHG units was estimated by 13C-NMR method. The results on the water solubility of MC were also discussed in terms of the distribution of substituents in the AHG units.  相似文献   

14.
Cellulose-based hydrogels have been prepared from solutions of hardwood and flax lignocelluloses and cotton cellulose in an N,N-dimethylacetamide–lithium chloride (DMAc/LiCl) mixture by regeneration and subsequent self-assembly of cellulose chains. The main physicochemical characteristics of the hydrogels have been investigated. It has been shown that they can retain large amounts of water (up to 2500 wt %) and have high porosity and specific surface area. The studied hydrogels are classical stable 3D structures; however, unlike other hydrogels, they possess high stability in aqueous medium and irreversibility of gelation.  相似文献   

15.
Effective utilization of winter bamboo shoot shell (BSS) is of great interest, since BSS provides a renewable and inexpensive bioresource for the production of biofuels. In this study, an effective combination pretreatment by the sequential aqueous ammonia (25 wt%) extraction at 50 °C for 24 h and LiCl/N,N-dimethyl formamide (LiCl/DMF) (6 wt% of LiCl) pretreatment at 50 °C for 8 h was used for pretreating BSS. SEM, FTIR, and XRD results indicated that combination pretreatment could effectively remove lignin and change the crystal structure of cellulose for promoting enzymatic saccharification. Additionally, significant linear correlations were found about solid recovery-delignification (R 2 = 0.9235), delignification-reducing sugars (R 2 = 0.9552), and delignification-hemicellulose removal (R 2 = 0.9779) during the combination pretreatment. The reducing sugars and glucose from the hydrolysis of 100 g/L pretreated BSS could be obtained at 72.3 and 40.5 g/L, respectively. Using the recovered BSS-hydrolysates containing 20–50 g/L glucose as carbon source, the ethanol yields at 48 h could be obtained at 84.5–86.1% of the theoretical yield. In conclusion, the sequential ammonia extraction and LiCl/DMF pretreatment has high potential application in future.  相似文献   

16.
Application of size exclusion chromatography (SEC) for the analysis of cellulose samples is often limited due to poor solubility in the solvent system N,N-dimethylacetamide/lithium chloride (DMAc/LiCl). Hence different activation or derivatization methods have been developed and published. Most of these methods are laborious, influence the molar mass distribution or do not support dissolution of manmade fibers, such as viscose rayon. In this study, we have evaluated different activation methods for their applicability in viscose rayon dissolution and we present a novel method for activation. We found that an additional solvent exchange step with dimethyl sulfoxide (DMSO) increases and accelerates solubility of viscose fibers in DMAc/LiCl for subsequent SEC analysis. The improved dissolution by DMSO activation is mainly due to increased swelling and improved action towards the outer skin of the fiber. The novel approach has also been applied to the even more difficult dissolution of oxidized viscose fibers.  相似文献   

17.
A wood cellulose was oxidized with catalytic amounts of 2-azaadamantane N-oxyl (AZADO) or 1-methyl-AZADO, in an NaBr/NaClO system, in water at pH 10. The oxidation efficiency, carboxylate/aldehyde contents, and degree of polymerization (DPv) of the oxidized celluloses thus obtained were evaluated in terms of the amount of AZADO or 1-methyl-AZADO catalyst added, in comparison with those prepared using the TEMPO/NaBr/NaClO system. When the AZADO/NaBr/NaClO and 1-methyl-AZADO/NaBr/NaClO oxidation systems were applied to wood cellulose using the same molar amount of TEMPO, the oxidation time needed for the preparation of oxidized celluloses with carboxylate contents of 1.2–1.3 mmol/g was reduced from ≈80 to 10–15 min. Moreover, the molar amounts of AZADO and 1-methyl-AZADO that had to be added for the preparation of oxidized celluloses with carboxylate contents of 1.2–1.3 mmol/g were reduced to 1/32 and 1/16 of the amount of TEMPO added, respectively. The DPv values for the AZADO- and 1-methyl-AZADO-oxidized celluloses after NaBH4 treatment were in the range of 600–800. This indicated that not only C6-carboxylate groups but also C2/C3 ketones were formed to some extent on the crystalline cellulose microfibril surfaces during the AZADO- and 1-methyl-AZADO-mediated oxidation. When the AZADO-oxidized wood cellulose, which had a carboxylate content of 1.2 mmol/g, was mechanically disintegrated in water, an almost transparent dispersion consisting of individually nano-dispersed oxidized cellulose nanofibrils was obtained, with a nanofibrillation yield of 89 %.  相似文献   

18.
A method for conversion of carboxyl groups present on the surface of TEMPO-oxidized cellulose nanofibrils to N-acylureas using carbodiimide was developed. A TEMPO-oxidized cellulose nanofibril with free carboxyl groups (TOCN–COOH) dispersed in N,N-dimethylformamide (DMF) is prepared from a bleached kraft pulp, and then the TOCN–COOH is reacted with either N,N′-diisopropylcarbodiimide (DIC) or N,N′-dicyclohexylcarbodiimide (DCC) under apparently homogeneous conditions. FT-IR and solid-state 13C NMR analyses showed that the reaction products contained N-acylurea groups, and yields were >80%. Conversion ratios of carboxyl groups to N-acylureas are approximately 80 and 60%, when DIC and DCC, respectively, of 5 mol per mole of carboxyl groups are used as the reagents. X-ray diffraction analysis demonstrated that neither crystallinity nor crystal width of the original wood cellulose I structure was changed by the N-acylurea formation. The isolated and never-dried TOCN-N-acylureas are nano-dispersed in DMF but not in i-PrOH or dioxane. Pellets of the TOCN-N-acylureas had water-contact angles of >70°.  相似文献   

19.
Thermal stabilization of TEMPO-oxidized cellulose   总被引:1,自引:0,他引:1  
A partially C6-carboxylated cellulose with carboxylate content of 1.68 mmol/g was prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation of a softwood bleached kraft pulp. Thermogravimetric analyses of the TEMPO-oxidized cellulose (TOC) and its related materials were studied to improve thermal stability of the TOC. Thermal decomposition (Td) points of the TOC with sodium carboxylate groups, alkali-treated TOC with free carboxyl groups of 0.23 mmol/g and the original cellulose were 222 °C, 264 °C and 275 °C, respectively. Thus, the anhydroglucuronic acid units formed by TEMPO-mediated oxidation of the native wood cellulose and present in the TOC cause the decrease in Td point by decarbonation during heating process. When carboxyl groups in the TOC were methylated with trimethylsilyl diazomethane (TMSCHN2), the Td point increased from 222 °C to 249 °C, and the peak temperature in its derivative thermogravimetric (DTG) curve increased from 273 °C to 313 °C, which was almost equal to that of the original cellulose. Thus, the methyl esterification of carboxyl groups in the TOC is effective in improving thermal stability. When sodium ions present in the TOC as counter ions of carboxylate groups were exchanged to some other metal ions, thermal stability was improved to some extent. Especially, when CaCl2, Ca(OAc)2, Ca(NO3)2 and CaI2 solutions were used in the ion-exchange treatments, the peak temperatures in the DTG curves increased to approximately 300 °C. MgCl2, NiCl2, SrCl2 and Sr(OAc)2 solutions were also effective to some extent in increasing the peak temperatures of DTG curves. Thus, thermal stability of the fibrous TOC can be improved to some extent by methyl esterification of the sodium carboxylate groups present in the original TOC with TMSCHN2 or ion-exchange treatments with some metal salt solutions.  相似文献   

20.
The influence of different solvents on the morphology of cellulose during the dissolution process was studied. Spruce sulfite pulp, cotton linters and hydrolysed cotton linters were treated for a short time with lithium chloride: N,N-dimethylacetamide (LiCl:DMAc) and an alkaline solution of iron sodium tartrate (EWNN), respectively. The changes occurring at the fibre surfaces and within the cell walls were observed by scanning as well as by transmission electron microscopy. The cellulose fibres show significant differences in the dissolution behaviour when comparing the reaction of the two solvents. Using LiCl:DMAc, the cotton linters fibres become lamellar separated and within the spruce sulfite pulp fibres solvent channels appear in the first step with the fibrils becoming separated. In contrast, EWNN has a swelling effect on the surface of the cellulose fibres. Both solvent systems predominantly affect the ends of the fibres and places where the wall structure has been damaged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号