首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用弹性理论和Galerkin方法建立小挠度矩形薄板在非线性弹性地基上受两对均布纵向简谐激励作用的双模态非线性动力学方程。应用多尺度法求得系统满足双频主参数共振条件的一次近似解和对应的定常解,并进行了数值计算。分析了阻尼系数、地基系数、几何参数等对系统双频主参数共振的影响。  相似文献   

2.
Chakraborty  G.  Mallik  A. K. 《Nonlinear dynamics》1998,17(4):301-324
The effects of parametric excitation on a traveling beam, both with and without an external harmonic excitation, have been studied including the non-linear terms. Non-linear, complex normal modes have been used for the response analysis. Detailed numerical results are presented to show the effects of non-linearity on the stability of the parametrically excited system. In the presence of both parametric and external harmonic excitations, the response characteristics are found to be similar to that of a Duffing oscillator. The results are sensitive to the relative strengths of and the phase difference between the two forms of excitations.  相似文献   

3.
Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams   总被引:2,自引:0,他引:2  
The nonlinear nonplanar response of cantilever inextensional metallic beams to a principal parametric excitation of two of its flexural modes, one in each plane, is investigated. The lowest torsional frequencies of the beams considered are much larger than the frequencies of the excited modes so that the torsional inertia can be neglected. Using this condition as well as the inextensionality condition, we develop a Lagrangian whose variation leads to two integro-partial-differential equations governing the motions of the beams. The method of time-averaged Lagrangian is used to derive four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two interacting modes. These modulation equations exhibit symmetry properties. A pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, Hopf, and codimension-2 bifurcations. A detailed bifurcation analysis of the dynamic solutions of the modulation equations is presented. Five branches of dynamic (periodic and chaotic) solutions were found. Two of these branches emerge from two Hopf bifurcations and the other three are isolated. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging and boundary crises.  相似文献   

4.
Lin  R.  Leng  G.  Lee  H. P. 《Nonlinear dynamics》1997,14(1):1-22
The dynamic behavior of a one-degree-of-freedom, parametrically excited nonlinear system is investigated. The Galerkin method is applied to the principal and fundamental parameteric resonance of the system. The continuation method is used to study the change of harmonic oscillation with respect to the variation of excitation frequency. The numerical stability analysis of the trivial solution is carried out and the stable and unstable regions of the trivial solution are given. They are found to agree with the results obtained by the analytical method of Galerkin. Periodic solutions are traced and the coexistence of multi-periodic solutions is observed With the change of excitation frequency the large amplitude periodic-2 oscillation is found to be in the same closed branch with the small amplitude periodic-2 solution. In addition, the bifurcation pattern of the trivial solution is found to change from subcritical Hopf bifurcation into supercritical Hopf bifurcation with the increase of excitation amplitude. Combined with the conventional numerical integration method, new complex dynamic behavior is detected.  相似文献   

5.
I compare application of the method of multiple scales with reconstitution and the generalized method of averaging for determining higher-order approximations of three single-degree-of-freedom systems and a two-degree-of-freedom system. Three implementations of the method of multiple scales are considered, namely, application of the method to the system equations expressed as second-order equations, as first-order equations, and in complex-variable form. I show that all of these methods produce the same modulation equations.I address the problem of determining higher-order approximate solutions of the Duffing equation in the case of primary resonance. I show that the conclusions of Rahman and Burton that the method of multiple scales, the generalized method of averaging, and Lie series and transforms might lead to incorrect results, in that spurious solutions occur and the obtained frequency–response curves bear little resemblance to the actual response, is the result of their using parameter values for which the neglected terms are the same order as the retained terms. I show also that spurious solutions cannot be avoided, in general, in any consistent expansion and their presence does not constitute a limitation of the methods. In particular, I show that, for the Duffing equation, the second-order frequency–response equation does not possess spurious solutions for the case of hardening nonlinearity, but possesses spurious solutions for the case of softening nonlinearity. For sufficiently small nonlinearity, the spurious solutions are far removed from the actual response. But as the strength of the nonlinearity increases, these solutions move closer to the backbone and eventually distort it. This is not a drawback of the perturbation methods but an indication of an application of the analysis for parameter values outside the range of validity of the expansion.Also, I address the problem of obtaining non-Hamiltonian modulation equations in the application of the method of multiple scales to multi-degree-of-freedom Hamiltonian systems written as second-order equations in time and how this problem can be overcome by attacking the state-space form of the governing equations. Moreover, I show that application of a variation of the method of Rahman and Burton to multi-degree-of-freedom systems leads to results that do not agree with those obtained with the generalized method of averaging.Contributed by Prof. R.A. Ibrahim.  相似文献   

6.
Nonlinear Normal Modes of a Parametrically Excited Cantilever Beam   总被引:1,自引:0,他引:1  
Yabuno  Hiroshi  Nayfeh  Ali H. 《Nonlinear dynamics》2001,25(1-3):65-77
We investigate theoretically thenonlinear normal modes of a vertical cantilever beam excited by aprincipal parametric resonance. We apply directly the method ofmultiple scales to the governing nonlinear nonautonomousintegral-partial-differential equation and associated boundary conditions.In the absence of damping, it is shown that the system has nonlinear normal modes, as defined by Rosenberg, even in the presence of the parametric excitation.We calculate the spatial correction to the linear mode shapedue to the effects of the inertia and curvature nonlinearities andthe parametric excitation. We compare the result obtained withthe direct approach with that obtained using a single-mode Galerkindiscretization.The deviation between the two predictions increases as the oscillationamplitude increases.  相似文献   

7.
Perturbation techniques and spectral moments are combined tocharacterize and quantify the damping and nonlinear parameters of thefirst mode of a three-beam two-mass frame. The frame is excitedharmonically near twice its lowest natural frequency. The response ismodeled with a second-order nonlinear equation with quadratic and cubicterms and linear and quadratic damping terms. The method of multiplescales is used to obtain a second-order approximate solution for thismodel. Bispectral analysis is used to quantify the level of couplingbetween modes and measure their phase difference. The amplitudes andphase difference between the excitation and response mode with differentfrequencies are substituted into the approximate solution to determinethe damping and nonlinear parameters.  相似文献   

8.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

9.
IntroductionInthefieldofprecisioninstrumentengineeringandarchitecturalengineering ,verythinlightstructuresofthevariablethicknesshaveariseninordertousematerialmorerationally .Then ,inpracticalengineering ,thepliableshellofnonuniformthicknesswiththelargege…  相似文献   

10.
Raghothama  A.  Narayanan  S. 《Nonlinear dynamics》2002,27(4):341-365
In this paper, the periodic motions of a nonlinear system with quadratic,cubic, and parametrically excited stiffness terms and with time-delayterms are obtained by the incremental harmonic balance (IHB) method. Theelements of the Jacobian matrix and residue vector arising in the IHBformulation are derived in closed form. A mechanism model representingthe one-mode oscillation of beams and plates is considered as anexample. A path-following algorithm with an arc-length parametriccontinuation procedure is used to obtain the response diagrams. Thesystem also exhibits chaotic motion through a cascade of period-doublingbifurcations, which is characterized by phase planes, Poincaré sectionsand Lyapunov exponents. The interpolated cell mapping (ICM) procedure isused to obtain the initial condition map corresponding to multiplesteady-state solutions.  相似文献   

11.
Rong  H. W.  Meng  G.  Xu  W.  Fang  T. 《Nonlinear dynamics》2003,32(1):93-107
The principal resonance of a 3-DOF nonlinear system to narrow-band random external excitations is investigated. The method of multiple scales is used to derive the equations for modulation of amplitude and phase. The behavior, stability and bifurcation of steady-state responses are studied by means of qualitative analysis. The effects of damping, detuning, and excitation intensity on responses are analyzed. The theoretical analyses are verified by numerical results. Both theoretical analyses and numerical simulations show that when the intensity of the random excitation increases, the nontrivial steady state solution may change from a limit cycle to a diffused limit cycle. Under some conditions, co-existence of two kinds of stable steady-state solutions, saturation and jump phenomena may occur. The stationary probability density function of responses for the co-existence case is obtained approximately.  相似文献   

12.
We investigate the parametric resonance of a van der Pol oscillator under state feedback control with a time delay. Using the asymptotic perturbation method, we obtain two slow-flow equations on the amplitude and phase ofthe oscillator. Their fixed points correspond to a periodic motion forthe starting system and we show parametric excitation-response andfrequency-response curves. We analyze the effect of time delay andfeedback gains from the viewpoint of vibration control and use energyconsiderations to study the existence and characteristics of limit cycles of the slow-flow equations. A limit cycle corresponds to a two-periodmodulated motion for the van der Pol oscillator. Analytical results areverified with numerical simulations. In order to exclude the possibilityof quasi-periodic motion and to reduce the amplitude peak of theparametric resonance, we find the appropriate choices for the feedbackgains and the time delay.  相似文献   

13.
Petkovska  Menka  Do  Duong D. 《Nonlinear dynamics》2000,21(4):353-376
The concept of higher-order frequency response functions(FRFs), which is based on Volterra series expansion of nonlinearfunctions, is used for analysis of kinetics of nonlinear adsorptionsystems. Four different kinetic mechanisms: Langmuir kinetics, filmresistance control, micropore diffusion control and pore-surfacediffusion control were analyzed and the results were compared. It wasshown that, contrary to the linear frequency response characteristicfunctions, the higher-order FRFs corresponding to different mechanismsdiffer in shape. This result offers great potential for theidentification of the adsorption-diffusion mechanism governing theprocess. It is shown that the second order FRFs give sufficientinformation for distinguishing different mechanisms.  相似文献   

14.
Das  S. L.  Chatterjee  A. 《Nonlinear dynamics》2003,32(2):161-186
The method of multiple scales and the related method of averaging are commonly used tostudy slowly modulated oscillations. If the system of interest is a slightlyperturbed harmonic oscillator, then these techniques can be applied easily. If the unperturbed system is strongly nonlinear (though possiblyconservative), then these methods can run into difficulties due to the impossibilityof carrying out required analytical operations in closed form.In this paper, we abandon the requirement of closed form analyticaltreatment at all stages. Instead, Galerkin projections are used toobtain approximate realizations of the method of multiple scales. Thispaper adapts recent work using similar ideas for approximaterealizations of the method of averaging. A key contribution of thepresent work is in the systematic identification and removal of secularterms in the general nonlinear case, a procedure that is more difficultthan for the perturbed harmonic oscillator case, and that is unnecessaryfor averaging.A strength of the present work is that the heuristics (Galerkin)and asymptotics (multiple scales) are kept distinct,leaving room for systematic refinement of the formerwithout compromising the asymptotic features of the latter.  相似文献   

15.
Yabuno  Hiroshi 《Nonlinear dynamics》1997,12(3):263-274
For a parametrically excited Duffing system we propose a bifurcation control method in order to stabilize the trivial steady state in the frequency response and in order to eliminate jump in the force response, by employing a combined linear-plus-nonlinear feedback control. Because the bifurcation of the system is characterized by its modulation equations, we first determine the order of the feedback gain so that the feedback modifies the modulation equations. By theoretically analyzing the modified modulation equations, we show that the unstable region of the trivial steady state can be shifted and the nonlinear character can be changed, by means of the bifurcation control with the above feedback. The shift of the unstable region permits the stabilization of the trivial steady state in the frequency response, and the suppression of the discontinuous bifurcation due to the change of the nonlinear character allows the elimination of the jump in the quasistationary force response. Furthermore, by performing numerical simulations, and by comparing the responses of the uncontrolled system and the controlled one, we clarify that the proposed bifurcation control is available for the stabilization of the trivial steady state in the frequency response and for the reduction of the jump in the nonstationary force response.  相似文献   

16.
研究了二自由度非线性系统在确定性谐和与随机噪声联合激励下的主共振响应。用多尺度法分离了系统的快变项 ,讨论了系统的阻尼项、随机项等对系统响应的影响。在一定条件下 ,系统具有两个均方响应值和跳跃现象 ,饱和现象也存在。数值模拟表明本文提出的方法是有效的  相似文献   

17.
We study a well-known regenerative machine tool vibration model (a delay differential equation) near a codimension 2 Hopf bifurcation point. The method of multiple scales is used directly, bypassing a center manifold reduction. We use a nonstandard choice of expansion parameter that helps understand practically relevant aspects of the dynamics for not-too-small amplitudes. Analytical expressions are then obtained for the double Hopf points. Both sub- and supercritical bifurcations are predicted to occur near the reference point; and analytical conditions on the parameter variations for each type of bifurcation to occur are obtained as well. Analytical approximations are supported by numerics.  相似文献   

18.
研究了带平方二自由度非线性系统在随机窄带参数激励下,用多尺度法分离了系统的快变项,讨论了系统的各参数对响应的影响。在一定条件下,系统具有两个均方响应值,具有跳跃现象和饱和现象,数值模拟表明提出的方法是有效的。  相似文献   

19.
Recently, the theory of approximate symmetries was developedfor tackling differential equations with a small parameter. This theoryfurnishes us with a tool, e.g. for constructing approximate groupinvariant solutions. Usually, these solutions are determined by powerseries in the small parameter and hence they are well defined only in asmall region of independent variables. In this paper, we modify theapproximate symmetry analysis by combining it with the multiple timescales method. In this way, we can extend the domain of definition ofapproximate symmetries of differential equations with a small parameterand of their invariant solutions. The method is illustrated by the vander Pol equation. It is shown that, in this example, our approachprovides a group theoretical background of ad hoc methods widelyused in perturbation techniques.  相似文献   

20.
Ji  J. C.  Leung  A. Y. T. 《Nonlinear dynamics》2002,27(4):411-417
A linear time-delayed feedback control is used to delay the occurrenceof pitchfork bifurcations and to eliminate saddle-node bifurcations,which may arise in the nonlinear response of a parametrically excitedDuffing system under the principal parametric resonance. The feedbackgains and the time delay are chosen by analyzing the modulationequations of the amplitude and the phase. It is shown that by using anappropriate feedback control, the stable region of the trivial solutionscan be broadened, a discontinuous bifurcation can be transformed into acontinuous one, and the jump phenomenon in the resonance response can beremoved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号