首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present work was to synthesize mononuclear ruthenium complex [RuCl2(CO)2{Te(CH2SiMe3)2}2] (1) by the reaction of Te(CH2SiMe3)2 and [RuCl2(CO)3]2. However, the stoichiometric reaction affords a mixture of 1 and [RuCl2(CO){Te(CH2SiMe3)2}3] (2). The X-ray structures show the formation of the cis(Cl), cis(C), trans(Te) isomer of 1 and the cis(Cl), mer(Te) isomer of 2. The 125Te NMR spectra of the complexes are reported. The complex distribution depends on the initial molar ratio of the reactants. With an excess of [RuCl2(CO)3]2 only 1 is formed. In addition to the stoichiometric reaction, a mixture of 1 and 2 is observed even when using an excess of Te(CH2SiMe3)2. Complex 1 is, however, always the main product. In these cases the 125Te NMR spectra of the reaction solution also indicates the presence of unreacted ligand.  相似文献   

2.
The chelate complexes of the types (1) and (2) have been synthesized and characterized by IR and NMR spectroscopy. The lower shift of the ν(P-Se) bands and downfield shift of the 31P-{1H}NMR signals for both P(III) and P(V) atoms in 1 and 2 compared to the corresponding free ligands indicate chelate formation through selenium donor. 1 and 2 show terminal ν(CO) bands at 1977 and 1981 cm−1, respectively, suggesting high electron density at the metal center. The molecular structure of 2 has been determined by single-crystal X-ray diffraction. The rhodium atom is at the center of a square planar geometry having the phosphorus and selenium atoms of the chelating ligand at cis-position, one carbonyl group trans- to selenium and one chlorine atom trans- to phosphorus atom. 1 and 2 undergo oxidative addition (OA) reaction with CH3I to produce acyl complexes (3) and (4), respectively. The kinetics of the OA reactions reveal that 1 undergoes faster reaction by about 4.5 times than 2. The catalytic activity of 1 and 2 in carbonylation of methanol was higher than that of the well known species [Rh(CO)2I2] and 2 shows higher catalytic activity compared to 1.  相似文献   

3.
A new series of bimetallic bis(diphenylphosphino)acetylene-bridged copper(I) 1,10-phenanthroline complexes, [Cu2(dppa)2(L)2](BF4)2; L?=?1,10-phenanthroline (1); 4-methyl-1,10-phenanthroline (2); 4,7-dimethyl-1,10-phenanthroline (3); and 2,9-dimethyl-1,10-phenanthroline (4), have been prepared and characterized by spectroscopic methods. The X-ray structures of 1 and 4 were determined. The structures consist of centrosymmetric bimetallic 10-membered chair-like dimetallacycles. In 1, intermolecular C–H?π interactions result in bending of the phenanthroline ligand and sterically induced lengthening of one Cu–P bond. In 1–4, the 31P NMR downfield coordination shift, relative to the free ligand, correlates with the basic strength of the 1,10-phenanthroline ligands.  相似文献   

4.
The complexation reaction between palladium (II) acetate, and 1,1′-bis(diphenylphosphino)ferrocene, DPPF, was investigated in two different deuterated solvents CDCl3 and DMSO at various temperatures using 31P NMR spectroscopy. The exchange between free and complexed DPPF is slow on the NMR time scale and consequently, two 31P NMR signals were observed. At metal ion-to-ligand mole ratio larger than 1, only one 31P NMR signal was observed, indicating the formation of a 1:1 Pd2+–DPPF complex in solution. The formation constant of the resulting 1:1 complexes was determined from the integration of two 31P signals. The values of the thermodynamic parameters (ΔH, ΔS and ΔG298) for complexation were determined from the temperature dependence of stability constants. It was found that, in both solvents, the resulting complex is mainly entirely enthalpy stabilized and the ΔH compensates the TΔS contribution.  相似文献   

5.
The generation and properties of the Cp2Zr{CH(SiMe3)2}+ cation are described. An X-ray crystallographic analysis shows that the carborane salt [Cp2Zr{CH(SiMe3)2}][HCB11Me5Br6] contains an agostic Zr-μ-Me-Si interaction in the solid state. Low temperature NMR spectra of the borate salt [Cp2Zr{CH(SiMe3)2}][B(C6F5)4] show that this interaction is retained in solution. Variable temperature NMR spectra establish that the SiMe2(μ-Me) and unbound SiMe3 units of Cp2Zr{CH(SiMe3)2}+ exchange by a “pivot” process involving partial rotation around the Zr-CH(SiMe3)2 bond, with a barrier of ΔG = 9.2(1) kcal/mol at −89 °C. Cp2Zr{CH(SiMe3)2}+ does not coordinate alkenes or alkynes.  相似文献   

6.
The synthesis of the rhenacycles [Re(CO)3(PR3){Ph2P(Se)NP(Se)Ph22Se}], PR3 = PPh3 (1), PMePh2 (2), and PMe2Ph (3) by a straightforward high yield procedure is described. Attempts at the preparation of the spiro [Re(CO)2(Ph2PCH2CH2PPh22P){Ph2P(Se)NP(Se)Ph22Se}] resulted in the formation of complexes [Re2(CO)6{Ph2P(Se)NP(Se)Ph22Se}2(μ-Ph2PCH2CH2PPh2)] (4) and [Re(CO)3(Ph2PCH2CH2PPh22P){Ph2P(Se)NP(Se)Ph2Se}] (5). All new inorganic rhenacycles 1-5 were characterized in solution and in solid state. The X-ray diffraction analysis of [Re(CO)3PPh3{Ph2P(Se)NP(Se)Ph22Se}] showed that its MnSePNPSe ring conformation is sensitive to temperature.  相似文献   

7.
The complexation reaction between uranyl (II) nitrate, and N-methyliminobis(methylenephosphonic acid) (MIDPH) was investigated in two different binary solvent mixtures of D2O-DMSO-d6 at various temperatures using 31P NMR spectroscopy. The exchange between the free ligand and the 1:1 complexed ligand was slow on the NMR timescale and two 31P NMR signals were observed. The formation constant of the resulting complex was evaluated from integration of the two 31P NMR signals. The values of thermodynamic parameters of the resulting complex (ΔH, ΔS and ΔG) were determined from the temperature dependence of the formation constants. In the two solvent mixtures studied, the resulting complex is enthalpy stabilized but entropy destabilized.  相似文献   

8.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   

9.
The reaction of UO3 and TeO3 with a KCl flux at 800 °C for 3 days yields single crystals of K4[(UO2)5(TeO3)2O5]. The structure of the title compound consists of layered, two-dimensional sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO7 pentagonal bipyramids and UO6 tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO3 units to form sheets. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193 K, MoKα, ): triclinic, space group , , , , α=99.642(1)°, β=93.591(1)°, γ=100.506(1)°, , Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2σ(I).  相似文献   

10.
The addition of LiBun to a toluene solution of Ph2P(O)N(CH2Ph)CH31 and 2,6-di-tert-butyl-4-methylphenol 5 leads to the formation of the mixed dimer [(Ph2P(O)N(CH2Ph)CH3) · LiOC6H2-2,6-{C(CH3)3}2-4-CH3) · C7H8]26. The single crystal X-ray structure shows that two lithium aryloxide moieties dimerize giving rise to a Li2O2 core in which each lithium atom is additionally coordinated to a phosphinamide 1 ligand. The multinuclear magnetic resonance study (1H, 7Li, 13C, 31P) indicates that the solid-state structure is preserved in toluene solution. Complex 6 may be considered as a model for the pre-complexation step preceding the metalation of phosphinamides by an organolithium base.  相似文献   

11.
Pentavalent bis(triorganosiloxy)triphenylantimony derivatives, Ph3Sb(OSiR3)2 (R = Me, Ph), were synthesized by reaction of triphenylantimony with trimethyl- or triphenylsilanol in the presence of tert-butylhydroperoxide by the mild reaction conditions (0-5 °C, 2 h). The reaction of triphenylantimony with diethanolamine in the presence of tert-butylhydroperoxide gave the cyclic compound Ph3Sb(OCH2CH2)2NH. The mixture of Ph3SbO and Ph3Sb(OCH2CH2NMe2)2 was obtained by the reaction of triphenylantimony with 2-(N,N-dimethylamino)ethanol in the presence of tert-butylhydroperoxide.  相似文献   

12.
Three new uranyl tungstates, A8[(UO2)4(WO4)4(WO5)2] (A=Rb (1), Cs (2)), and Rb6[(UO2)2O(WO4)4] (3), were prepared by high-temperature solid-state reactions and their structures were solved by direct methods on twinned crystals, refined to R1=0.050, 0.042, and 0.052 for 1, 2, and 3, respectively. Compounds 1 and 2 are isostructural, monoclinic P21/n, (1): a=11.100(7), b=13.161(9), , β=90.033(13)°, , Z=8 and (2): , , , β=89.988(2)°, , Z=8. There are four symmetrically independent U6+ sites that form linear uranyl [O=U=O]2+ cations with rather distorted coordination in their equatorial planes. There are six W positions: W(1) and W(2) have square-pyramidal coordination (WO5), whereas W(3), W(4), W(5), and W(6) are tetrahedrally coordinated. The structures are based upon a novel type of one-dimensional (1D) [(UO2)4(WO4)4(WO5)2]4− chains, consisting of WU4O25 pentamers linked by WO4 tetrahedra and WO5 square pyramids. The chains run parallel to the a-axis and are arranged in modulated pseudo-2D-layers parallel to (0 1 0). The A+ cations are in the interlayer space between adjacent pseudo-layers and provide a 3D integrity of the structures. Compounds 1 and 2 are the first uranyl tungstates with 2/3 of W atoms in tetrahedral coordination. Such a high concentration of low-coordinated W6+ cations is probably responsible for the 1D character of the uranyl tungstate units. The compound 3 is triclinic, Pa=10.188(2), b=13.110(2), , α=97.853(3), β=96.573(3), γ=103.894(3)°, , Z=4. There are four U positions in the structure with a typical coordination of a pentagonal bipyramid that contain uranyl ions, UO22+, as apical axes. Among eight W sites, the W(1), W(2), W(3), W(4), W(5), and W(6) atoms are tetrahedrally coordinated, whereas the W(7) and W(8) cations have distorted fivefold coordination. The structure contains chains of composition [(UO2)2O(WO4)4]6− composed of UO7 pentagonal bipyramids and W polyhedra. The chains involve dimers of UO7 pentagonal bipyramids that share common O atoms. The dimers are linked into chains by sharing corners with WO4 tetrahedra. The chains are parallel to [−101] and are arranged in layers that are parallel to (1 1 1). The Rb+ cations provide linkage of the chains into a 3D structure. The compound 1 has many structural and chemical similarities to its molybdate analog, Rb6[(UO2)2O(MoO4)4]. However, the compounds are not isostructural. Due to the tendency of the W6+ cations to have higher-than-fourfold coordination, part of the W sites adopt distorted fivefold coordination, whereas all Mo atoms in the Mo compound are tetrahedrally coordinated. Distribution of the WO5 configurations along the chain extension does not conform to its ‘typical’ periodicity. As a result, both the chain identity period and the unit-cell volume are doubled in comparison to the Mo analog, which leads to a new structure type.  相似文献   

13.
本文报道了一种trans-双铂双膦配合物的单晶结构.配合物中dppm以桥联方式与金属配位,形成一个八元环的骨架结构 .  相似文献   

14.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

15.
New uranyl vanadates A3(UO2)7(VO4)5O (M=Li (1), Na (2), Ag (3)) have been synthesized by solid-state reaction and their structures determined from single-crystal X-ray diffraction data for 1 and 3. The tetragonal structure results of an alternation of two types of sheets denoted S for 2[UO2(VO4)2]4− and D for 2[(UO2)2(VO4)3]5− built from UO6 square bipyramids and connected through VO4 tetrahedra to 1[U(3)O5-U(4)O5]8− infinite chains of edge-shared U(3)O7 and U(4)O7 pentagonal bipyramids alternatively parallel to a- and b-axis to construct a three-dimensional uranyl vanadate arrangement. It is noticeable that similar [UO5]4− chains are connected only by S-type sheets in A2(UO2)3(VO4)2O and by D-type sheets in A(UO2)4(VO4)3, thus A3(UO2)7(VO4)5O appears as an intergrowth structure between the two previously reported series. The mobility of the monovalent ion in the mutually perpendicular channels created in the three-dimensional arrangement is correlated to the occupation rate of the sites and by the geometry of the different sites occupied by either Na, Ag or Li. Crystallographic data: 293 K, Bruker X8-APEX2 X-ray diffractometer equipped with a 4 K CCD detector, MoKα, λ=0.71073 Å, tetragonal symmetry, space group Pm2, Z=1, full-matrix least-squares refinement on the basis of F2; 1,a=7.2794(9) Å, c=14.514(4) Å, R1=0.021 and wR2=0.048 for 62 parameters with 782 independent reflections with I?2σ(I); 3, a=7.2373(3) Å, c=14.7973(15) Å, R1=0.041 and wR2=0.085 for 60 parameters with 1066 independent reflections with I?2σ(I).  相似文献   

16.
A new uranyl oxyfluoride, [N(C2H5)4]2[(UO2)4(OH2)3F10] has been synthesized by a hydrothermal reaction technique using (C2H5)4NBr, UO2(OCOCH3)2·2H2O, and HF as reagents. The structure of [N(C2H5)4]2[(UO2)4(OH2)3F10] has been determined by a single-crystal X-ray diffraction technique. [N(C2H5)4]2[(UO2)4(OH2)3F10] crystallizes in the monoclinic space group P21/n (No. 14), with , , , β=98.88(3)°, , and Z=4. [N(C2H5)4]2[(UO2)4(OH2)3F10] reveals a novel pseudo-two-dimensional crystal structure that is composed of UO2F5, UO3F4, and UO4F3 pentagonal bipyramids. Each uranyl pentagonal bipyramid shares edges and corners through F atoms to form a six-membered ring. The rings are further interconnected to generate infinite strips running along the b-axis. [N(C2H5)4]2[(UO2)4(OH2)3F10] has been further characterized by elemental analysis, bond valence calculations, Infrared and Raman spectroscopy, and thermogravimetric analysis.  相似文献   

17.
The reactivity pattern of the 16-electron species [M(Cp)2Cl2] (M = Zr, Hf; Cp− = η5-C5H5) and [Ti(MeCp)2Cl2] (MeCp− = η5-C5H4CH3) towards the dipicolinate(−2) (dipic2−) ligand under mild (ambient temperature) and convenient (aerobic reactions, aqueous media) conditions have been investigated. The syntheses, molecular structures and spectroscopic (IR, 1H NMR) characterization are reported for the 18-electron products [Zr(Cp)2(dipic)] (1), [Hf(Cp)2(dipic)] (2) and [Ti(MeCp)2(dipic)] (3). The dipic2− ion behaves as N,O,O′-chelating ligand in the three complexes, while the centroids of the Cp (1, 2) and MeCp (3) rings formally occupy the fourth and fifth coordination sites about the central metal. The two identical/very similar bite angles of only ∼70° make the dipic2− ligand particularly suited to form stable metallocene derivatives with 5-coordinate geometry. IR and 1H NMR data are discussed in terms of the known structures and the tridentate chelating mode of the dipic2− ligand.  相似文献   

18.
Two new mixed organic-inorganic uranyl molybdates, (C6H14N2)3[(UO2)5(MoO4)8](H2O)4 (1) and (C2H10N2)[(UO2)(MoO4)2] (2), have been obtained by hydrothermal methods. The structure of 1 [triclinic, , Z=1, a=11.8557(9), b=11.8702(9), c=12.6746(9) Å, α=96.734(2)°, β=91.107(2)°, γ=110.193(2)°, V=1659.1(2) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.058, which was calculated for the 5642 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl square bipyramids, uranyl pentagonal bipyramids, and MoO4 tetrahedra, with composition [(UO2)5(MoO4)8]6−, that are parallel to (−101). H2O groups and 1,4-diazabicyclo [2.2.2]-octane (DABCO) molecules are located in the interlayer, where they provide linkage of the sheets. The structure of 2 [triclinic, , Z=2, a=8.4004(4), b=11.2600(5), c=13.1239(6) Å, α=86.112(1)°, β=86.434(1)°, γ=76.544(1)°, V=1203.14(10) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.043, which was calculated for 5491 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl pentagonal bipyramids and MoO4 tetrahedra, with composition [(UO2)(MoO4)2]2−, that are parallel to (110). Ethylenediamine molecules are located in the interlayer, where they provide linkage of the sheets. All known topologies of uranyl molybdate sheets of corner-sharing U and Mo polyhedra can be described by their nodal representations (representations as graphs in which U and Mo polyhedra are given as black and white vertices, respectively). Each topology can be derived from a simple black-and-white graph of six-connected black vertices and three-connected white vertices by deleting some of its segments and white vertices.  相似文献   

19.
Under mild hydrothermal conditions UO2(NO3)2·6H2O, Hg2(NO3)2·2H2O, and Na2HAsO4·7H2O react to form [Hg5O2(OH)4][(UO2)2(AsO4)2] (HgUAs-1). Single crystal X-ray diffraction experiments reveal that HgUAs-1 possesses a pseudo-layered structure consisting of two types of layers: and . The layers are complex, and contain three crystallographically unique Hg centers. The coordination environments and bond-valence sum calculations indicate that the Hg centers are divalent. The layers belong to the Johannite topological family. The and layers are linked to each other through μ2-O bridges that include Hg?O=U=O interactions.  相似文献   

20.
Complete demethylation of Cp2Ti(CH3)2 in dichloromethane with 2 M equivalent of [η5-(C5H4COOH)]Cr(CO)2NO (5), [η5-(C5H4COOH)]Cr(NO)2X] (X = Cl 6, X = I 7), and [η5-(C5H4COOH)]W(CO)3CH3 (8); gives Cp2Ti{[OC(O)C5H4]Cr(CO)2NO}2 (13), Cp2Ti{[OC(O)C5H4]Cr(NO)2Cl}2 (14), Cp2Ti{[OC(O)C5H4]Cr(NO)2I}2 (15),and Cp2Ti{[OC(O)C5H4]W(CO)3CH3}2 (16), respectively. The chemical shifts of C(2)-C(5) carbon atoms of compounds 13-15 have been assigned using two-dimensional HetCOR NMR spectroscopy. The assigned chemical shifts were compared with the NMR data of their analogues of ferrocene, and the opposite correlation on the assignments was observed for cynichrodenoyl moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号