首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Straw-like nano-structure of a new mixed-ligand Zn(II) two-dimensional coordination polymer, {[Zn(μ-4,4′-bipy)(μ-3-bpdb)(H2O)2](ClO4)2·4,4′-bipy·3-bpdb·H2O}n (1) {4,4′-bipy = 4,4′-bipyridine and 3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene}, was synthesized by a sonochemical method. The new nano-structure was characterised by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. Compound 1 was structurally characterised by single crystal X-ray diffraction and consists of two-dimensional polymeric units. ZnO nanoparticles were obtained by calcination of compound 1 at 500 °C under air atmosphere and were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

2.
Five transition metal compounds containing arenesulfonates and 4,4′-bipy ligands, namely [Zn2(N,N′-4,4′-bipy)(N-4,4′-bipy)2(H2O)8](bpds)2 · 5H2O (1), [Ag2(N,N′-4,4′-bipy)2(bpds)] (2), [Cd(N,N′-4,4′-bipy)(H2O)4]2(4-abs)4 · 5H2O (3), [Cu(N,N′-4,4′-bipy) (O-bs)2(H2O)2] · 4H2O (4), and [Zn(N,N′-4,4′-bipy)2(H2O)2](4,4′-bipy)(bs)2 · 4H2O (5) (4,4′-bipy = 4,4′-bipyridine, bpds = 4,4′-biphenyldisulfonate, 4-abs = 4-aminobenzenesulfonate, bs = benzenesulfonate), have been synthesized and characterized by X-ray single crystal diffraction, elemental analyses and TG analyses, in order to investigate the coordination chemistry of arenesulfonates and 4,4-bipy, as well as to construct novel coordination frameworks via mixed-ligand strategy. Compounds 2, 4 and 5 could be obtained via hydrothermal or aqueous reactions. Compound 1 forms a binuclear octahedral metal complex. Compounds 24 form polymeric chains. Compound 5 consists of 2D square grids with one intercalated 4,4′-bipy molecule. Weak Ag–Ag interactions are observed in compound 2. These complexes show great structural varieties and there are three different coordination modes observed for both the 4,4′-bipy and the sulfonate ligands.  相似文献   

3.
A nano-sized mixed-ligand Cd(II) coordination polymer, {[Cd(bpa)(4,4′-bipy)2(H2O)2](ClO4)2}n (1); bpa = trans-1,2-bis(4-pyridyl)ethane and 4,4′-bipy = 4,4′-bipyridine, has been synthesized by a sonochemical method and characterized by IR and 1H NMR spectroscopy. Compound 1 grows in one dimension by two different bridging ligands, 4,4′-bipy and bpa. The thermal stability of compound 1 in the bulk form and nano-sized was studied by thermogravimetric (TG) and differential thermal analysis (DTA). The crystallinity of this compound was studied by X-ray powder diffraction and compared with an XRD simulation of the single crystal data. CdO nanoparticles were obtained by direct calcination at 500 °C and decomposition in oleic acid at 200 °C of the nano-sized compound 1. The obtained cadmium(II) oxide nano-particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

4.
A series of four metal–organic frameworks, namely, [Cu(sdpa)0.5(2,2′-bpy)]·H2O (1), [Zn2(sdpa)(2,2′-bpy)2(H2O)2]·3H2O (2), [Zn2(sdpa)(4,4′-bpy)]·3H2O (3), [Cd2(sdpa)(4,4′-bpy)1.5(H2O)2](4), have been hydro(solvo)thermally synthesized through the reaction of 2,3,2′,3′-sulfonyldiphthalic acid (H4sdpa) with divalent copper, zinc and cadmium salts in the presence of ancillary nitrogen ligands (4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine) and structurally characterized by elemental analysis, IR and X-ray diffraction. Both complex 1 and 2 show metal–organic chain structure, and the adjacent chains are further linked by π?π and C–H?π interactions for 1 and hydrogen bonds and π?π interactions for 2 to form 3D supramolecular structure. In complex 3, two Zn1 and two Zn2 atoms appear alternately and are bridged by sdpa4− anion ligands to form an infinite Zn-sdpa chain. Such chains are further linked together through 4,4′-bpy ligands in four orientations to form a robust 3D metal–organic network. In compound 4, a 3D Cd-sdpa metal–organic network is accomplished through sdpa4− anion ligands, and further stabilized by 4,4′-bpy in six orientations. Their luminescence and thermal analysis have also been investigated.  相似文献   

5.
Two new supramolecular assemblies based on Keggin-type polyoxometalates, [Ag3(4,4′-bipy)2(2,2′-bipy)2][Ag(2,2′-bipy)2][{Ag(2,2′-bipy)}HSiW11VO40] (1) and [Ag3(4,4′-bipy)2(2,2′-bipy)2][Ag(2,2′-bipy)2][{Ag(2,2′-bipy)}PW11VO40] (2) (4,4′-bipy = 4,4′-bipyridine, 2,2′-bipy = 2,2′-bipyridine), have been synthesized under the hydrothermal conditions and structurally characterized by IR, XPS, TG and single-crystal X-ray diffraction. Compound 1 has a 2D layer network structure via weak Ag...O interactions. Compound 2 is isostructural with compound 1. In addition, the fluorescence of compound 1 is reported.  相似文献   

6.
Five new Cu(II) complexes [Cu(psa)(phen)] · 3H2O (1), [Cu(psa)(2bpy)] · 0.5H2O (2), [Cu(psa)(2bpy)(H2O)] · 3H2O (3), [Cu(psa)(4bpy)] · H2O (4), and [Cu(psa)0.5(N3)(2bpy)] (5) (H2psa = phenylsuccinic acid, phen = 1,10-phenanthroline, 2bpy = 2,2′-bipyridine, and 4bpy = 4,4′-bipyridine) were obtained under solvothermal conditions and characterized by single-crystal X-ray diffraction. Complexes 2 and 3 were formed by one-pot reaction. In complex 2, Cu(II) ion is four-coordinated and locates at a slightly distorted square center. In complex 3, the coordinated water molecule occupies the axial site of Cu(II) ion forming a tetragonal pyramid geometry. Complexes 1 and 3 are of 1D chain structures, and extended into 2D supramolecular network by hydrogen bonds. Complex 2 is of zipper structure, and further assembled into 2D supramolecular network by hydrogen bonds and π–π stacking interactions. Complex 4 is a 3D CdSO4-like structure with twofold interpenetration, while complex 5 is a dinuclear compound. The different structures of complexes 15 can be attributed to using the auxiliary ligands, indicating an important role of the auxiliary ligands in assembly and structure of the title complexes.  相似文献   

7.
Two neutral ligands, L1 · 2H2O and L2 · H2O, and seven complexes, [Cu(pmb)2(L1)] (1), [Cu(pmb)2(L2)] (2), [Cu(Ac)2(L2)] · 4H2O (3), [Cu(4-aba)2(L2)] (4), [Ag(4-ts)(L1)(H2O)] (5), [Ag2(epes)2(L1)] · 2H2O (6), [Ag(1,5-nds)0.5(L2)] · 0.5C2H5OH · H2O (7) [where L1 = 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole); L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole), pmb = p-methoxybenzoate anion; Ac = acetate anion; 4-aba = 4-aminobenzoate anion; 4-ts = p-toluenesulfonate anion; epes = N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonate) anion; 1,5-nds = 1,5-naphthalenedisulfonate anion], have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The L1 and L2 ligands in compounds 17 act as bridging ligands, linking metal ions into chain structures. The chains in compounds 3, 4 and 6 interlace with each other by hydrogen bonds to generate 3D supramolecular structures. In compound 5, π–π interactions between adjacent L1 ligands hold the chains to a supramolecular layer. In compound 7, the sulfonate anions act as counterions in the framework. The thermal stabilities of 3, 6 and 7, and the luminescent properties for 57 in the solid states are also discussed.  相似文献   

8.
Five new copper(II) complexes [Cu(dbsf)(H2O)]n · 0.5n(i-C3H7OH) (1), [Cu(dbsf)(4,4′-bpy)0.5]n · nH2O (2), [Cu(dbsf)(2,2′-bpy)(H2O)]2 · (n-C3H7OH) · 0.5H2O (3), [Cu(dbsf)(phen)(H2O)]2 · 1.5H2O (4) and [Cu(dbsf)(2,2′-bpy)(H2O)]n · n(i-C3H7OH) (5) (H2dbsf = 4,4′-dicarboxybiphenyl sulfone, 4,4′-bpy = 4,4′-bipyridine, 2,2′-bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, i-C3H7OH = isopropanol, n-C3H7OH = n-propanol) have been synthesized under hydro/solvothermal conditions. All of the complexes are assembled from V-shaped building blocks, [Cu(dbsf)]. Complex 1 is composed of 1D double-chains. In complex 2, dbsf2− ligands and 4,4′-bpy ligands connect Cu(II) ions into catenane-like 2D layers. These catenane-like 2D layers stack in an ABAB fashion to form a 3D supramolecular network. Complexes 3 and 4 are 0D dimers, in which two [Cu(dbsf)] units encircle to form dimetal macrocyclic molecules. However, in complex 5, the V-shaped building blocks [Cu(dbsf)] are joined head-to-tail, resulting in the formation of infinite tooth-like chains. The different structures of complexes 3 and 5 may be attributed to the different solvent molecules included.  相似文献   

9.
Two new isomorphous tetranuclear complexes [Cu4L2(4,4′-bipy)2]·(ClO4)4·2CH3CN·2H2O (1) and [Zn4L2(4,4′-bipy)2]·(ClO4)3·CH3O·4H2O (2) have been obtained and fully characterized (where bipy = bipyridine, H2L = macrocycle is the [2+2] condensation product of 2,6-diformyl-4-fluoro-phenol and 1,4-diaminobutane). They exhibit wheel-like configuration in which two 4,4′-bipy molecules connect two dinuclear [M2L]2+ units. The interactions of the complexes with calf thymus DNA were studied by UV-Vis and CD spectroscopic techniques. The binding constants of 1 and 2 are 2.27 × 106 and 3.89 × 105 M−1, respectively. The magnetic measurement of 1 reveals that there are strong antiferromagnetic coupling (J = -272.6 cm−1) between two Cu(II) ions in the macrocyclic unit and ferromagnetic interaction (j′ = 41.7) between the Cu(II) ions in two adjacent macrocyclic units. Furthermore, the cyclic voltammogram of 1 shows that it undergoes two quasi-reversible processes with the half wave potentials -0.232 and -0.606 V, respectively.  相似文献   

10.
Treatment of [Ir(ppy)2(μ-Cl)]2 and [Ir(ppy)2(dtbpy)][OTf] (ppy = 2-(2′-pyridyl)phenyl; dtbpy = 4,4′-di-tert-butyl-2,2′-bipyridine; OTf = triflate) with pyridinium tribromide in the presence of Fe powder led to isolation of [Ir(4-Br-ppy)(μ-Br)]2 (1) and [Ir(4-Br-ppy)2(dtbpy)][OTf] (2), respectively. Pd-catalyzed cross-coupling of 2 with RB(OH)2 afforded [Ir(4-R-ppy)2(dtbpy)][OTf] (R = 4′-FC6H4 (3)), 4′-PhC6H4 (4), 2′-thienyl (5), 4′-C6H4CH2OH (6). Treatment of 4 with B2(pin)2 (pin = pinacolate) afforded [Ir{4-(pin)B-ppy}2(dtbpy)][OTf] (7). The alkynyl complexes [Ir(4-PhCC-ppy)2(dtbpy)][OTf] (8) and [Ir{4-Me2(OH)CC-ppy}(4-Br-ppy)(dtbpy)][OTf] (9) were prepared by cross-coupling of 2 with PhCCSnMe3 and Me2C(OH)CCH, respectively. Ethynylation of [Ir(fppy)2(dtbpy)][OTf] (fppy = 5-formyl-2-(2′-pyridyl)phenyl) with Ohira’s reagent MeCOC(N2)P(O)(OEt)2 afforded [Ir{5-HCC-ppy}2(dtbpy)][OTf] (10). The solid-state structures of 2, 5, 7, and 10 have been determined.  相似文献   

11.
The mononuclear high-spin iron(III) complexes [Fe(3-MeOsalpn)Cl(H2O)] (1) and [Fe(3-MeOsalpn)(NCS)(H2O)]·0.5CH3CN (2) and the tetranuclear oxo-bridged compound [{Fe(3-MeOsalpn)Gd(NO3)3}2(μ-O)]·CH3CN (3) [3-MeOsalpn2− = N,N′-propylenebis(3-methoxysalicylideneiminate)] have been prepared and magneto-structurally characterised. The iron(III) ion in 1 and 2 is six-coordinated in a somewhat distorted octahedral surrounding with the two phenolate-oxygens and two imine-nitrogens from the Schiff-base building the equatorial plane and a water (1 and 2) and a chloro (1)/thiocyanate-nitrogen (2) in the axial positions. The neutral mononuclear units of 1 and 2 are assembled into centrosymmetric dinuclear motifs through hydrogen bonds between the axially coordinated water molecule of one iron centre and methoxy-oxygen atoms from the Schiff-base of the adjacent iron atom. The values of the intradimer metal-metal distance within the supramolecular dimers are 4.930 (1) and 4.878 Å (2). The tetranuclear of 3 can be described as two {FeIII(3-MeOsalpn)} units connected through an oxo-bridge, each one hosting a [GdIII(NO3)3] entity in the outer cavity defined by the two phenolate- and two methoxy-oxygen atoms. The values of the intramolecular Fe?Fe and Fe?Gd distances in 3 are 3.502 and 3.606 Å, respectively. The analysis of the magnetic data of 1-3 in the temperature range 1.9-300 K shows the occurrence of weak intermolecular antiferromagnetic interactions in 1 and 2 [J = −0.76 (1) and −0.75 cm−1 (2) with the Hamiltonian defined as H = −JSFe1·SFe1] whereas two intramolecular antiferromagnetic interactions coexist in 3, one very strong between the two iron(III) ions (J1) through the oxo bridge and the other much weaker between the iron(III) and the Gd(III) ions (J2) across the double phenoxo oxygens [J1 = −275 cm−1 and J2 = −3.25 cm−1, the Hamiltonian being defined as H=-J1SFe1·SFe1-J2(SFe1·SGd1+SFe1·SGd1)]. These values are analysed in the light of the structural data and compared with those of related systems.  相似文献   

12.
Reaction of formamide with Ni(NO3)2·6H2O under hydrothermal condition in a mixture of MeOH/H2O forms a two-dimensional formate bridged sheet Ni(HCOO)2(MeOH)2 (1). X-ray structure analysis reveals the conversion of formamide to formate which acts as a bridging ligand in complex 1 where the axial sites of Ni(II) are occupied by methanol used as a solvent. An analogous reaction in presence of 4,4′-bipyridyl (4,4′-bipy) yielded a three-dimensional structure Ni(HCOO)2(4,4′-bpy) (2). DC magnetic measurements as a function of temperature and field established the presence of spontaneous magnetization with Tc (Curie temperature) = 17 and 20.8 K in 1 and 2, respectively, which can be attributed due to spin-canting. DFT calculations were performed to corroborate the magnetic results of 1 and 2.  相似文献   

13.
Nine new compounds, namely [CuL1(biim-6)] · H2O (1), [ZnL1(biim-6)] · H2O (2), [MnL1(biim-6)] · H2O (3), [MnL1(biim-4)] (4), [Co2(L2)2(biim-5)3 · 6H2O] · 8H2O (5), [ZnL3(biim-6)] (6), [ZnL3(biim-5)] (7), [CdL3(biim-5) · 1.5H2O] · 0.5H2O (8) and [CdL4(biim-6) · 2H2O] (9) [where L1 = oxalate anion, L2 = fumarate anion, L3 = phthalate anion, L4 = p-phthalate anion, biim-4 = 1,1′-(1,4-butanediyl)bis(imidazole), biim-5 = 1,1′-(1,5-pentanedidyl)bis(imidazole) and biim-6 = 1,1′-(1,6-hexanedidyl)bis(imidazole)] were successfully synthesized. Compounds 13 are isostructural, and display 2D polymeric structures. Compound 4 shows a threefold interpenetrating diamondoid framework. In compound 5, the anions act as counterions, and the metal cations are bridged by bis(imidazole) ligands to form 1D polymeric chains. Compounds 69 show 2D polymeric structures. The magnetic properties for 1, 3 and 4 and luminescent properties for 2 and 69 are discussed. Thermogravimetric analyses (TGA) for these compounds are also discussed.  相似文献   

14.
Four novel coordination polymers constructed from flexible pamoic acid, namely [Co(pam)(4,4′-bipy)]n·nH2O (1), [Ni(pam)(4,4′-bipy)(H2O)2]n·2nCH3CN (2), [Cd(pam)(py)2]n·npy (3) and [Mn2(pam)2(py)6(H2O)2]n·2npy (4), (H2pam = pamoic acid, 4,4′-bipy = 4,4′-bipyridine, py = pyridine), have been synthesized and characterized by elemental analysis, infrared spectra and X-ray crystallography. Complex 1 is a 2-D coordination polymer constructed from chelating bis-bidentate pam and 4,4′-bipyridine bridging ligands. Complex 2 is a 2-D coordination polymer assembled by bis-monodentate pam and 4,4′-bipyridine, where acetonitrile is filled in the rectangle channels. Both 2-D coordination polymers display undulated (4,4) grid layers as sql topology. Complex 3 displays a 1-D polymeric chain using chelating bis-bidentate pam as bridging ligand. Complex 4 exhibits an interesting bis-monodentate pam-Mn(II) 1-D polymeric chain, in which exist two-type six-coordinated manganese centers. Mn(1) is bound to four pyridine ligands, whereas Mn(2) is combined to two pyridine and two H2O molecules. Their thermal stabilities have been investigated. Cadmium complex 3 displays strong green luminescence with emission maximum at 543 nm.  相似文献   

15.
The current paper describes the synthesis and spectral investigations on the adducts of [Zn(dbzdtc)2] (1) with 1,10-phen (2), tmed (3), 2,2′-bipy (4) and 4,4′-bipy (5) (where, dbzdtc = dibenzyldithiocarbamate anion, 1,10-phen = 1,10-phenanthroline, tmed = tetramethylethylenediamine, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridne) and single crystal X-ray structures of [Zn(dbzdtc)2(1,10-phen)] (2) and [Zn(dbzdtc)2(tmed)] (3) and [Zn(dbzdtc)2(4,4′-bipy)] (5). 1H and 13C NMR spectra of 1,10-phen, tmed, 2,2′-bipy and 4,4′-bipy adducts were recorded. 1H NMR spectra of the complexes show the drift of electrons from the nitrogen of the substituents forcing a high electron density towards sulfur via the thioureide π-system. In the 13C NMR spectra, the most important thioureide (N13CS2) carbon signals are observed in the region: 206–210 ppm. Fluorescence spectra of complexes (2) and (4) show intense fluorescence due to the presence of rigid conjugate systems such as 1,10-phenanthroline and 2,2′-bipyridine. The observed fluorescence maxima for complexes with an MS4N2 chromophore in the visible region are assigned to the metal-to-ligand charge transfer (MLCT) processes. Single crystal X-ray structural analysis of (2) and (3) showed that the zinc atom is in a distorted octahedral environment. Bond Valence Sum was found to be equivalent to 1.865 for (2), 1.681 for (3) supporting the correctness of the determined structure. BVS of (3) deviates from the formal oxidation number of zinc due to the non-aromatic, sterically hindering tetramethyl bonding end of tmed. Thermal studies on the compounds show the formation of Zn(NCS)2 as an intermediate during the decay.  相似文献   

16.
Three novel CoII coordination polymers [Co(Dpq)2(1,4-NDC)0.5] · (1,4-HNDC) (1), [Co(Dpq)(2,6-NDC)] (2), and [Co2(Dpq)2(BPEA)4(H2O)] · H2O (3) have been obtained from hydrothermal reaction of cobalt nitrate with the mixed ligands dipyrido[3,2-d:2′,3′-f]quinoxaline (Dpq) and three dicarboxylate ligands with different spacer length [1,4-naphthalene-dicarboxylic acid (1,4-H2NDC), 2,6-naphthalene-dicarboxylic acid (2,6-H2NDC) and biphenylethene-4,4′-dicarboxylic acid (BPEA)]. All these complexes are fully structurally characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Single-crystal X-ray analysis reveal that complex 1 is infinite one-dimensional (1-D) chains bridged by 1,4-NDC ligands, which are extended into a two-dimensional (2-D) supramolecular network by π-π interactions between the Dpq molecules. Complex 2 is a distorted three-dimensional (3-D) PtS network constructed from infinite Co-O-C rod units. Complex 3 has a 5-fold interpenetrated 3-D structure with diamondoid topology based on dinuclear [Co2(CO2)22-OH2)N4O2] units and BPEA molecules. The different structures of complexes 1-3 illustrate the influence of the length of dicarboxylate ligands on the self-assembly of polymeric coordination architectures. In addition, the thermal properties of complexes 1-3 and fluorescent properties of complexes 2 and 3 have been investigated in the solid state.  相似文献   

17.
Condensation of (S)-2-amino-2′-hydroxy-1,1′-binaphthyl with 1 equiv. of pyrrole-2-carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (S)-2-(pyrrol-2-ylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl (1H2) in 90% yield. Deprotonation of 1H2 with NaH in THF, followed by reaction with LnCl3 in THF gives, after recrystallization from a toluene or benzene solution, dinuclear complexes (1)3Y2(thf)2 · 3C7H8 (3 · 3C7H8) and (1)3Yb2(thf)2 · 3C6H6 (4 · 3C6H6), respectively, in good yields. Treatment of 1H2 with Ln[N(SiMe3)2]3 in toluene under reflux, followed by recrystallization from a benzene solution gives the dimeric amido complexes {1-LnN(SiMe3)2}2 · 2C6H6 (Ln = Y (5 · 2C6H6), Yb (6 · 2C6H6)) in good yields. All compounds have been characterized by various spectroscopic techniques, elemental analyses and X-ray diffraction analyses. Complexes 5 and 6 are active catalysts for the polymerization of methyl methacrylate (MMA) in toluene, affording syn-rich poly-(MMA)s.  相似文献   

18.
A new trinuclear linear Ni(II) compound [Ni3(H2O)2(DMA)2(acshz)2] · 2DMF (DMA = dimethylamine) (1) and a new Fe(III) 18-metallacrown-6 [Fe6(acbshz)6(DMF)(H2O)5] · 5DMF (2), with two similar pentadentate ligands, N-acryloyl-salicylhydrazide (H3acshz) and N-acryloyl-5-bromosalicylhydrazide (H3acbshz) have been synthesized and characterized by X-ray crystallography. In compound 1, three nickel ions arrange in a strictly linear structure, adjacent molecules are linked by intermolecular H bonds to form a 2D infinite wave-like structure. In compound 2, the ring of the metallacrown is consisted of six interlink [Fe–N–N] repeated units through hydrazide N–N group bridging. It is the first metallacrown that the coordination environments of metal ions in the cycle ring are different, and these differences make the two faces of the disc-shaped hexanuclear ring do not have opposite chiralities. The studies in solution integrity and stability of the metallacrown 2 show it is soluble and stable in DMF. UV–Vis titrations demonstrate the metallacrown 2 is stable in DMF even in the presence of excess metal ions. Antibacterial screening data indicate the two compounds all have antimicrobial activities against the tested microorganisms. The activities of metallacrown 2 are stronger than trinuclear compound 1.  相似文献   

19.
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2-diaminoethane and acetylacetone, reacts with Cu(BF4)2 · 6H2O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}2(μ-4,4′-bipy)](BF4)2 (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)2(μ-4,4′-bipy)]n (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)2 · 6H2O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(μ-4,4′-bipy)}(ClO4)]n (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV–Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4′-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn–Teller effect in copper(II).  相似文献   

20.
Treatment of [Fe(bipy)Cl4][bipy · H] (1) and [Fe(phen)Cl4][phen · H] (3) (where bipy is 2,2′-bipyridine and phen is 1,10-phenanthroline) with dimethyl sulfoxide in methanolic solution produced [Fe(bipy)Cl3(DMSO)] (2) and [Fe(phen)Cl3(DMSO)] (4) (where DMSO is dimethyl sulfoxide), respectively. The resulting complexes were characterized by elemental analysis, IR, UV–Vis and 1H NMR spectroscopies and by the X-ray diffraction method. These complexes are high spin with a spin multiplicity of 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号