首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterization of Co(II), Ni(II) and Cu(II) complexes of 2-acetyl-2-thiazoline hydrazone (ATH) are reported. Elemental analysis, IR spectroscopy, UV–Vis–NIR diffuse reflectance and magnetic susceptibility measurement, as well as, in the case of copper complex EPR spectroscopy, have been used to characterize the complexes. In addition, the structure of [NiCl2(ATH)2] (2) and [{CuCl(ATH)}2(μ-Cl)2] (3) have been determined by single crystal X-ray diffraction. In all complexes, the ligand ATH bonds to the metal ion through the imine and thiazoline nitrogen atoms. X-ray data indicates that the environment around the nickel atom in 2 may be described as a distorted octahedral geometry with the metallic atom coordinated to two chlorine atoms, two thiazoline nitrogen atoms and two imino nitrogen atoms. With regard to 3, it can be said that its structure consists of dimeric molecules in which copper ions are bridge by two chlorine ligands. The geometry about each copper ion approximates to a distorted square pyramid with each copper atom coordinated to one thiazoline nitrogen atom, one imine nitrogen atom, one terminal chlorine ligand and two bridge chlorine ligands. In compound 3, magnetic susceptibility measurements in the temperature range 2–300 K show an intradimer antiferromagnetic interaction (J = −7.5 cm−1).  相似文献   

2.
The dinuclear hydroxo complex [{Pd(μ-OH)(Phox)}2] (I) (Phox = 2-(2-oxazolinyl)phenyl) reacts in a 1:2 molar ratio with several imidate ligands to yield new cyclometallated palladium complexes [{Pd(μ-NCO)(Phox)}2] containing asymmetric imidate –NCO– bridging units. [–NCO– = succinimidate (succ) (1), phtalimidate (phtal) (2), maleimidate (mal) (3), 2,3-dibromomaleimidate (2,3-diBrmal) (4) and glutarimidate (glut) (5)]. The reaction of these complexes with tertiary phosphines provides novel mononuclear N-bonded imidate derivatives of the general formula [Pd(imidate)(Phox)(PR3)] [R = Ph (a), 4-F–C6H4 (b) or CH2CH2CN (c)]. The new complexes were characterized by partial elemental analyses and spectroscopic methods (IR, FAB, 1H, 13C and 31P). The single-crystal structures of compounds 4, 4a and 5a have been established.  相似文献   

3.
New copper complexes with two structural isomeric ligands, 2-(indazol-1-yl)-2-thiazoline (TnInA) and 2-(indazol-2-yl)-2-thiazoline (TnInL), have been synthesized and characterized by magnetic measurements, IR, electronic and EPR spectroscopies. Moreover, the molecular structures of [Cu(NO3)(TnInA)2(H2O)](NO3) · (H2O) (1) and [Cu(NO3)2(TnInL)(H2O)] (2) have been resolved by single-crystal X-ray diffraction studies. In compound 1 the copper ion is in a distorted octahedral geometry, with the equatorial plane formed by four nitrogen donor atoms from two organic ligands and the axial positions occupied by two oxygen atoms from a water molecule and a mono-coordinated nitrate anion. The coordination geometry around the copper atom in compound 2 can be described basically as a square pyramid with two nitrogen atoms from TnInL ligand, one oxygen atom from a water molecule and one oxygen atom from a nitrate group in the equatorial plane. The axial position is occupied by one oxygen atom from a nitrate group. Likewise, a second oxygen atom from the last nitrate group in equatorial position might involve in a weak sixth coordination position to give a (4 + 1 + 1) coordination mode.  相似文献   

4.
A series of nickel (II) complexes (L)NiCl2 (7-9) and (L)NiBr2 (10-12) were prepared by the reactions of the corresponding 2-carboxylate-6-iminopyridine ligands 1-6 with NiCl2 · 6H2O or (DME)NiBr2 (DME = 1,2-dimethoxyethane), respectively. All the complexes were characterized by IR spectroscopy and elemental analysis. Solid-state structures of 7, 8, 10, 11 and 12 were determined by X-ray diffraction. In the cases of 7, 8 and 10, the ligands chelate with the nickel centers in tridentate fashion in which the carbonyl oxygen atoms coordinate with the metal centers, while the carbonyl oxygen atoms are free from coordinating with the nickel centers in 11 and 12. Upon activation with methylaluminoxane (MAO), these complexes are active for ethylene oligomerization (up to 7.97 × 105 g mol−1 (Ni) h−1 for 11 with 2 equivalents of PPh3 as auxiliary ligand) and/or polymerization (1.37 × 104 g mol−1 (Ni) h−1 for 9). The ethylene oligomerization activities of 7-12 were significantly improved in the presence of PPh3 as auxiliary ligands. The effects of the coordination environment and reaction conditions on the ethylene catalytic behaviors have been discussed.  相似文献   

5.
Synthetic, structural and catalysis studies of Ni(II) and Cu(II) complexes of a series of phenoxy-ketimine ligands with controlled variations of sterics, namely 2-[1-(2,6-diethylphenylimino)ethyl]phenol (1a), 2-[1-(2,6-dimethylphenylimino)ethyl]phenol (1b) and 2-[1-(2-methylphenylimino)ethyl]phenol (1c), are reported. Specifically, the ligands 1a, 1b and 1c were synthesized by the TiCl4 mediated condensation reactions of the respective anilines with o-hydroxyacetophenone in 21–23% yield. The nickel complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Ni(II) (2a) and {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Ni(II) (2b), were synthesized by the reaction of the respective ligands 1a and 1b with Ni(OAc)2 · 4H2O in the presence of NEt3 as a base in 71–75% yield. The copper complexes, {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Cu(II) (3a), {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Cu(II) (3b) and {2-[1-(2-methylphenylimino)ethyl]phenoxy}2Cu(II) (3c) were synthesized analogously by the reactions of the ligands 1a, 1b and 1c with Cu(OAc)2 · H2O in 70–87% yield. The molecular structures of the nickel and copper complexes 2a, 2b, 3a, 3b and 3c have been determined by X-ray diffraction studies. Structural comparisons revealed that the nickel centers in 2a and 2b are in square planar geometries while the geometry around the copper varied from being square planar in 3a and 3c to distorted square planar in 3b. The catalysis studies revealed that while the copper complexes 3a, 3b and 3c efficiently catalyze ring-opening polymerization (ROP) of l-lactide at elevated temperatures under solvent-free melt conditions, producing polylactide polymers of moderate molecular weights with narrow molecular weight distributions, the nickel counterparts 2a and 2b failed to yield the polylactide polymer.  相似文献   

6.
The synthesis of half-sandwich binuclear transition-metal complexes containing the CabC,C chelate ligands (CabC,C = C2B10H10 (1)) is described. 1Li2 was reacted with chloride-bridged dimers [Cp∗RhCl(μ-Cl)]2 (Cp∗ = η5-C5(CH3)5), [Cp′RhCl(μ-Cl)]2 (Cp′ = η5-1,3-tBu2C5H3), [Cp∗IrCl(μ-Cl)]2 and [(p-cymene)RuCl(μ-Cl)]2 to give half-sandwich binuclear complexes [Cp∗Rh(μ-Cl)]2(CabC,C) (2), [Cp′Rh(μ-Cl)]2(CabC,C) [3),[Cp∗Ir(μ-Cl)]2(CabC,C) (4) and [(p-cymene)Ru(μ-Cl)]2(CabC,C) (5), respectively. Addition reactions of the ruthenium complex 5 with air gave [(p-cymene)2Ru2(μ-OH)(μ-Cl)](CabC,C) (6), rhodium complex 2 with LiSPh gave [Cp∗Rh(μ-SPh)]2(CabC,C) (7). The complexes were characterized by IR, NMR spectroscopy and elemental analysis. In addition, X-ray structure analysis were performed on complexes 2-7 where the potential C,C-chelate ligand was found to coordinate in a bidentate mode as a bridge.  相似文献   

7.
Two types of pyrazole-based palladium complexes were used to catalyze the polymerization of phenylacetylene. Catalysts with electron-withdrawing linkers, [{1,3-(3,5-R2pzCO)2C6H4}Pd2Cl2(μ-Cl)2] (R = tBu (1), Ph (2), Me (3), [{2,6-(3,5-R2pzCO)2C5H3N)}PdCl2] (R = tBu (4), Me (5)), show high conversion; whilst those with simple pyrazole ligands, [(3,5-R2pz)2PdCl2] (R = H (6), Me (7), tBu (8)), [(3,5-tBu2pz)2PdCl(Me)] (9), have much lower conversions. Conversion greatly improved when 9 was used to catalyze the co-polymerization of sulfur dioxide and phenylacetylene. Both types of catalysts produce predominantly transcisoidal polyphenylacetylene.  相似文献   

8.
The binuclear alkoxycarbene complexes [M2(CO)9{C(OEt)C4H3Y}] (M = Mn, Y = S(1), O(2); Re, Y = S(3), O(4)) were synthesised and characterised, giving axial carbene ligands for the dimanganese complexes, and equatorial carbene ligands for the dirhenium complexes. Aminolysis of these complexes with ammonia and n-propylamine yielded complexes [M2(CO)9{C(NHR)C4H3Y}] (R = H, M = Mn, Y = S(5), O(6); Re, Y = S(7), O(8); R = propyl, M = Mn, Y = S(9), O(10); Re, Y = S(11), O(12)). For the smaller NH2-substituted carbene ligands, the X-ray structures determined showed equatorial carbene ligands for both dimanganese and dirhenium complexes, while the NHPr-substituted carbene complexes retained the original configurations of the precursor alkoxy carbene complex, indicating that the steric effects of both the M(CO)5-fragment and the carbene ligand substituent can affect the coordination site of the carbene ligands of Group VII transition metal complexes in the solid state.  相似文献   

9.
A series of N-(2-pyridyl)benzamides (1)-(11) and their nickel complexes, [N-(2-pyridyl)benzamide]dinickel(II) di-μ-bromide dibromide (12)-(16) and (aryl)[N-(2-pyridyl)benzamido](triphenylphosphine)nickel(II) (17)-(24), were synthesized and characterized. The single-crystal X-ray analysis revealed that 12 and 14 are binuclear nickel complexes bridged by bromine atoms and each nickel atom adopts a distorted trigonal bipyramidal geometry. The key feature of the complexes 17, 19 and 23 is each has a six-membered nickel chelate ring including a deprotonated secondary nitrogen atom and an O-donor atom. The nickel complexes show moderate to high catalytic activity for ethylene oligomerization with methylaluminoxane (MAO) as cocatalyst. The activity of 12-16/MAO systems is up to 3.3 × 104 g mol−1 h−1 whereas for 17-24/MAO systems it is up to 4.94 × 105 g mol−1 atm−1 h−1. The influence of Al/Ni molar ratio, reaction temperature, reaction period and PPh3/Ni molar ratio on catalytic activity was investigated.  相似文献   

10.
Reactions of [Ni(L)]Cl2 · 2H2O (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with isophthalic acid (H2isoph) and 1,3,5-cyclohexanetricarboxylic acid (H3chtc) yield the 1D nickel(II) complexes {[Ni(L)(isoph)] · 3H2O}n (1) and {[Ni(L)(H-chtc)] · H2O}n (2). The structures were characterized by X-ray crystallography, spectroscopic and magnetic susceptibility. The crystal structures of the 1D chain compounds 1 and 2 show an elongated distorted octahedron about each nickel(II) ion. The magnetic behavior of two compounds exhibits weak intrachain antiferromagnetic interaction with J values of −0.93 cm−1 for 1 and −1.28 cm−1 for 2. The electronic spectra of the complexes are significantly affected by the nature of the carboxylate ligands.  相似文献   

11.
Reactions of [M(Cp)Cl(μ-Cl)]2 (M = Ir(1a); M = Rh(1b)) with tridentate ligands tpt (tpt = 2,4,6-tripyridyl-1,3,5-triazine) gave the corresponding trinuclear complexes [M3(Cp)33-4-tpt-κN)Cl6] (M = Ir(2a); M = Rh(2b)), which can be converted into hexanuclear complexes [M6(Cp)63-4-tpt-κN)2(μ-Cl)6](O3SCF3)6 (M = Ir(3a); M = Rh(3b)) by treatment with AgO3SCF3, respectively. X-ray of 3b revealed that each of six pentamethylcyclopentadienyl metal moieties was connected by two μ-Cl-bridged atoms and a tridentate ligand to construct a cation triangular metallo-prism cavity with the volume of about 273 Å3 based on the distance of the two triazine moieties is 3.62 Å.  相似文献   

12.
A series of nickel (II) complexes ligated by 2-imino-1,10-phenanthrolines were synthesized and characterized by elemental and spectroscopic analysis as well as by single-crystal X-ray crystallography. X-ray crystallographic analysis reveals complexes 3, 5, 7 and 11 as the five-coordinated distorted trigonal-bipyramidal geometry. Upon activation with Et2AlCl, these complexes exhibited considerably high activity for ethylene oligomerization (up to 3.76 × 107 g mol−1(Ni) h−1 for 12 with 10 equiv. of PPh3). The ligand environment and reaction conditions significantly affect the catalytic activity of their nickel complexes.  相似文献   

13.
The metal β-diketiminato ligand-to-metal binding modes are briefly reviewed, with reference particularly to our previous work on metal complexes using the ligands [{N(R1)C(R2)}2CH] (R1 = SiMe3 = R and R2 = Ph; or R1 = C6H3Pri2-2,6 and R2 = Me). The syntheses of the β-diketimines H[{N(R)C(Ar)}2CH] 1 (Ar = Ph) and 2 (Ar = C6H4Me-4) and the ansa-CH2-bridged bis(β-diketimine)s 3 (Ar = Ph) and 4 (Ar = C6H4Me-4) are reported. Thus, from the appropriate compound Li[{N(R)C(Ar)}2CH] and H2O, (CH2Br)2 or CH2Br2 the product was 2, 3 or 4. Compound 1 was prepared from K[{N(R)C(Ph)}2CH] and (CH2Br)2. Each of 3 or 4 with LiBun surprisingly yielded the bicyclic dilithium compound 5 (Ar = Ph) or 6 (Ar = C6H4Me-4) in which each of the β-diketiminato fragments is an N,N′-bridge between the two lithium atoms and the CH2 moiety joins the two ligands through their central carbon atoms. However, 4 with AlMe3 yielded the expected ansa-CH2-bridged-bis[(β-diketiminato)(dimethyl)alane] 7, which was also obtained from 6 and Al(Cl)Me2. X-ray structures of the known compounds 2 and 3, and of 5, 6 and 7 are presented; the 1H NMR spectra of 6 in toluene-d8 show that there is restricted rotation about the NC-C6H4Me-4 bond.  相似文献   

14.
Two series of new organolanthanide(II) complexes with general formula {η51-[1-R-3-(2-C5H4NCH2)C9H5]}2Ln(II) (R = H-, Ln = Yb (3), Eu (4); R = Me3Si-, Ln = Yb (5), Eu (6)), and {η51-[1-R-3-(3-C5H4NCH2)C9H5]}2Ln(II) (R = H-, Ln = Yb (9), Eu (10); R = Me3Si-, Ln = Yb (11), Eu (12)) were synthesized by silylamine elimination with one-electron reductive reactions of lanthanide(III) amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Yb, Eu) with 2 equiv. 1-R-3-(2-C5H4NCH2)C9H6 (R = H (1), Me3Si- (2)) or 1-R-3-(3-C5H4NCH2)C9H6 (R = H (7), Me3Si- (8)) in good yields. All the complexes were fully characterized by elemental analyses and spectroscopic methods. Complexes 3 and 5 were additionally characterized by single-crystal X-ray diffraction study. The catalytic activities of the complexes for MMA polymerization were examined. It was found that complexes with 3-pyridylmethyl substituent on the indenyl ligands could function as single-component MMA polymerization catalysts with good activities, while the complexes with 2-pyridylmethyl substituent on the indenyl ligands cannot catalyze MMA polymerization. The temperatures and solvents effect on the MMA polymerization have also been examined.  相似文献   

15.
A series of mixed ligand cadmium(II) complexes having 3,5-dimethylpyrazole and aromatic carboxylate are structurally characterized. The effect of substituent on aromatic ring and also the effect of composition on co-ordination behavior of these complexes are ascertained. Hydrogen bonded self-assembled mononuclear complexes are obtained from composition [Cd(L)2(La)2] where La = 3,5-dimethylpyrazole L = R–C6H4COO– [R = H (1), 2-Cl (2), 4-OH (3), 2-OH (4)]. The cadmium complex (5) having composition [Cd(L)2(La)(H2O)] (L = 2-NO2–C6H4COO–) is tetra-nuclear. The complex has eight and six co-ordination around cadmium and self-assembles through hydrogen bonding leading to form extended chain structure. The four complexes (14) have six co-ordinated trigonal prismatic geometry around cadmium ions. Cadmium complexes having composition [Cd(L)2(La)] such as R = 4-NO2 (6), 4-Cl (7), and 1-naphthoate complex (8) are co-ordination polymers with seven co-ordination geometry around cadmium. In these co-ordination polymers different Cd–Cd distances are observed for alternate pair of cadmium ions. For example in the case of the co-ordination polymer of 4-nitro-benzoate complex the Cd–Cd distance between alternate pairs are 4.138 Å, and 3.748 Å. The 1-naphthoate complex having pyridine has composition [Cd(L)2(Lb)2](H2O)] (9) where Lb = pyridine and L = 1-naphthoate has seven co-ordination with a distorted pentagonal bipyramid geometry.  相似文献   

16.
Two novel Ni(II) complexes {[Ni(en)2(pot)2]0.5CHCl3} (3) {pot = 5-phenyl-1,3,4-oxadiazole-2-thione} (1) and [Ni(en)2](3-pytol)2 (4) {3-pytol = 5-(3-pyridyl)-1,3,4-oxadiazole-2-thiol} (2) have been synthesized using en as coligand. The metal complexes have been characterized by physical and analytical techniques and also by single crystal X-ray studies. The complexes 3 and 4 crystallize in monoclinic system with space group P21/a and P121/c, respectively. The complex 3 has a slightly distorted octahedral geometry with trans (pot) ligands while 4 has a square planar geometry around the centrosymmetric Ni(II) center with ionically linked trans (3-pytol) ligands. The π?π (face to face) interaction plays an important role along with hydrogen bondings to form supramolecular architecture in both complexes.  相似文献   

17.
Five new Cu(II) complexes [Cu(psa)(phen)] · 3H2O (1), [Cu(psa)(2bpy)] · 0.5H2O (2), [Cu(psa)(2bpy)(H2O)] · 3H2O (3), [Cu(psa)(4bpy)] · H2O (4), and [Cu(psa)0.5(N3)(2bpy)] (5) (H2psa = phenylsuccinic acid, phen = 1,10-phenanthroline, 2bpy = 2,2′-bipyridine, and 4bpy = 4,4′-bipyridine) were obtained under solvothermal conditions and characterized by single-crystal X-ray diffraction. Complexes 2 and 3 were formed by one-pot reaction. In complex 2, Cu(II) ion is four-coordinated and locates at a slightly distorted square center. In complex 3, the coordinated water molecule occupies the axial site of Cu(II) ion forming a tetragonal pyramid geometry. Complexes 1 and 3 are of 1D chain structures, and extended into 2D supramolecular network by hydrogen bonds. Complex 2 is of zipper structure, and further assembled into 2D supramolecular network by hydrogen bonds and π–π stacking interactions. Complex 4 is a 3D CdSO4-like structure with twofold interpenetration, while complex 5 is a dinuclear compound. The different structures of complexes 15 can be attributed to using the auxiliary ligands, indicating an important role of the auxiliary ligands in assembly and structure of the title complexes.  相似文献   

18.
Treatment of RnGeCl4−n with {S(C6H3SH)2O} (1) afforded the stable phenoxathiin-4,6-dithiolate compounds [{S(C6H3S)2O}GeR2] [n = 2; R = Et (2), Ph (3)] and [{S(C6H3S)2O}GeRCl] [n = 1; R = Et (4), Ph (5)]. Treatment of GeCl4 with 1 in benzene afforded the dichloro compound [{S(C6H3S)2O}GeCl2] (8) at 7 °C. Bromo compounds [{S(C6H3S)2O}GeRBr] [R = Et (6), Ph (7)] and [{S(C6H3S)2O}GeBr2] (9) were synthesized by halogen exchange from the appropriate chloro derivative using KBr/HBr. X-ray structure determinations of diorganyl dithiolate compounds 2 and 3 revealed that germanium atom is contained in a boat–chair-shaped eight-membered central ring and displays a tetrahedral geometry. In contrast, compounds 46 display a boat–boat-shaped central ring with a significant intramolecular transannular O···Ge interaction. The geometry of the pentacoordinate Ge atom in these last complexes may be described as distorted trigonal bipyramidal with a 62–65% distortion displacement.  相似文献   

19.
The nickel(0) complex [Ni(bpy)(cod)] (bpy: 2,2′-bipyridine, cod: cycloocta-1,5-diene) was used as a mild reducing reagent for the synthesis of the extremely reactive low-valent palladium complexes [Pd2X2(cod)2] (1: X = Cl, 2: X = Br), Pd(cod)2 (3) and Pd(norbornene)3 (4). The X-ray analysis of 1 showed that the two [Pd(cod)(Cl)] moieties are only connected by a short Pd(I)-Pd(I) bond (bond length: 2.5379(4) Å) with the chloride ions as monodentate ligands. The X-ray structure of 3 which is also known to be an extremely reactive compound could be determined by X-ray diffraction. As expected, the Pd(0) centre is surrounded by the two cod ligands to form a PdC4 tetrahedron with typical Pd-C bond lengths. The crystal structure of 3 shows it to be very similar to the closely related complexes M(cod)2 (M: Ni, Pt). The X-ray structure of 4 displays that the Pd(0) centre is in a trigonal planar environment of the three olefin groups. According to 1H NMR measurements the complexes have the same structure in solution as found in the solid state.  相似文献   

20.
Three Co(II), Ni(II) and Zn(II) complexes of orotate with the N-methylimidazole ligand were synthesized and characterized by means of elemental and thermal analysis, magnetic susceptibilities, IR, UV-Vis spectroscopic and antimicrobial activity studies. The crystal structures of [Co(HOr)(H2O)2(Nmeim)2]3·H2O (1), [Ni(HOr)(H2O)2(Nmeim)2] (2) and [Zn(HOr)(H2O)(Nmeim)2] (3) were determined by the single crystal X-ray diffraction technique (H3Or = orotic acid and Nmeim = N-methylimidazole). In complexes 1 and 2, the Co(II) and Ni(II) ions have distorted octahedral geometries with two Nmeim, one orotate and two aqua ligands. Complex 3 has a distorted trigonal bipyramidal geometry with two N-methylimidazole, one orotate and one aqua ligands. In the complexes, the orotate is coordinated to the metal(II) ions through the deprotonated nitrogen atom of the pyrimidine ring and the oxygen atom of the carboxylate group as a bidentate ligand. The complexes form a three-dimensional framework by hydrogen bonding, C-H?π and π?π stacking interactions. The MIC values of the complexes against selected microorganisms were determined to be in range 300-2400 μg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号