首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The reactions of Ga(acac)3 with N-salicylidene-o-aminophenol (saphH2) and its 5-methyl (5MesaphH2) and 5-bromo (5BrsaphH2) derivatives in alcohols afforded the complexes [Ga(acac)(saph)(EtOH)] (1), [Ga(acac)(5Mesaph)(MeOH)] (2) and [Ga(acac)(5Brsaph)(EtOH)] (3), respectively, in good yields. The crystal structures of 1 and 2 have been solved by single-crystal X-ray crystallography. All three complexes are mononuclear with the GaIII atoms being surrounded by a dianionic tridentate Schiff base ligand, one bidentate acac ligand and a terminal alcohol molecule. Characteristic IR data are discussed in terms of the nature of bonding and the structures of the three complexes.  相似文献   

2.
The new complexes [Co(ecpzdtc)3] (2) [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) have been synthesized from sodium 1-ethoxycarbonyl-piperazine-4-carbodithioate [(Na+(ecpzdtc)]. The ligand and the complexes have been characterized by elemental analyses, IR, magnetic susceptibility and single crystal X-ray data. The [Zn(ecpzdtc)2(py)] and [Cd(ecpzdtc)2(py)]·H2O complexes contain pyridine as the co-ligand. [Co(ecpzdtc)3] (2) crystallizes in the monoclinic system, whereas [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) crystallize in the triclinic system. The sulfur donor sites of the bidentate ligand chelate the metal center, forming a four-membered CS2M ring. The cobalt complex has a distorted octahedral geometry, the zinc complex is almost between trigonal bipyramidal and square pyramidal, whereas the cadmium complex is square pyramidal. The crystal structures of all the complexes are stabilized by various types of inter and intramolecular hydrogen bonding.  相似文献   

3.
The mononuclear high-spin iron(III) complexes [Fe(3-MeOsalpn)Cl(H2O)] (1) and [Fe(3-MeOsalpn)(NCS)(H2O)]·0.5CH3CN (2) and the tetranuclear oxo-bridged compound [{Fe(3-MeOsalpn)Gd(NO3)3}2(μ-O)]·CH3CN (3) [3-MeOsalpn2− = N,N′-propylenebis(3-methoxysalicylideneiminate)] have been prepared and magneto-structurally characterised. The iron(III) ion in 1 and 2 is six-coordinated in a somewhat distorted octahedral surrounding with the two phenolate-oxygens and two imine-nitrogens from the Schiff-base building the equatorial plane and a water (1 and 2) and a chloro (1)/thiocyanate-nitrogen (2) in the axial positions. The neutral mononuclear units of 1 and 2 are assembled into centrosymmetric dinuclear motifs through hydrogen bonds between the axially coordinated water molecule of one iron centre and methoxy-oxygen atoms from the Schiff-base of the adjacent iron atom. The values of the intradimer metal-metal distance within the supramolecular dimers are 4.930 (1) and 4.878 Å (2). The tetranuclear of 3 can be described as two {FeIII(3-MeOsalpn)} units connected through an oxo-bridge, each one hosting a [GdIII(NO3)3] entity in the outer cavity defined by the two phenolate- and two methoxy-oxygen atoms. The values of the intramolecular Fe?Fe and Fe?Gd distances in 3 are 3.502 and 3.606 Å, respectively. The analysis of the magnetic data of 1-3 in the temperature range 1.9-300 K shows the occurrence of weak intermolecular antiferromagnetic interactions in 1 and 2 [J = −0.76 (1) and −0.75 cm−1 (2) with the Hamiltonian defined as H = −JSFe1·SFe1] whereas two intramolecular antiferromagnetic interactions coexist in 3, one very strong between the two iron(III) ions (J1) through the oxo bridge and the other much weaker between the iron(III) and the Gd(III) ions (J2) across the double phenoxo oxygens [J1 = −275 cm−1 and J2 = −3.25 cm−1, the Hamiltonian being defined as H=-J1SFe1·SFe1-J2(SFe1·SGd1+SFe1·SGd1)]. These values are analysed in the light of the structural data and compared with those of related systems.  相似文献   

4.
Reaction of N(4)-phenyl-2-formylpyridine thiosemicarbazone (H2Fo4Ph), N(4)-phenyl-2-acetylpyridine thiosemicarbazone (H2Ac4Ph) and N(4)-phenyl-2-benzoylpyridine thiosemicarbazone (H2Bz4Ph) with gallium nitrate gave [Ga(H2Fo4Ph)2](NO3)3 (1), [Ga(2Ac4Ph)2]NO3 (2) and [Ga(2Bz4Ph)2]NO3 (3). In all complexes coordination of the thiosemicarbazone via the Npy–N–S chelating system occurs. In 1 the thiosemicarbazone acts as a neutral ligand while in 2 and 3 the ligand is anionic. Upon slow diffusion of 2 in DMSO [Ga(2Ac4Ph)2]NO3·DMSO (2a) was formed. The crystal structure of 2a was determined. Upon coordination the antibacterial activity of both gallium and thiosemicarbazones against Pseudomonas aeruginosa significantly increases.  相似文献   

5.
The reaction of acetonitrile (15) and mixed acetonitrile/water 1:1 (69) solutions containing the cyanide-bearing [Fe(bipy)(CN)4] building block (bipy = 2,2′-bipyridine) and the partially blocked [Ln(bpym)]3+ cation (Ln = lanthanide trivalent cation and bpym = 2,2′-bipyrimidine) has afforded two new families of 3d–4f supramolecular assemblies of formula [Ln(bpym)(NO3)2(H2O)3][Fe(bipy)(CN)4] · H2O · CH3CN [Ln = Sm (1), Gd (2), Tb (3), Dy (4) and Ho (5)] and [Ln(bpym)(NO3)2(H2O)4][Fe(bipy)(CN)4] [Ln = Pr (6), Nd (7), Sm (8), Gd (9)]. They crystallize in the P21/c (15) and P2/c (69) space groups and their structures are made up of [Fe(bipy)(CN)4] anions (19) and [Ln(bpym)(NO3)2(H2O)n]+ cations [n = 3 (15) and 4 (69)] with uncoordinated water and acetonitrile molecules (15) which are interlinked through an extensive network of hydrogen bonds and π–π stacking into three-dimensional motifs. Both families have in common the occurrence of the low-spin iron(III) unit [Fe(bipy)(CN)4] where two bipy–nitrogen and four cyanide–carbon atoms build a somewhat distorted octahedral surrounding around the iron atom [Fe–N = 1.980(3)–1.988(3) Å (15) and 1.988(2)–1.992(2) Å (69); Fe–C = 1.904(5)–1.952(4) Å (15) and 1.911(2)–1.948(3) Å (69)]. The main structural difference between both families concerns the environment of the lanthanide atom which is nine- (15)/10-coordinated (69) with a chelating bpym, two bidentate nitrate and three (15)/four (69) water molecules building distorted monocapped (15)/bicapped (69) square antiprisms. This different lanthanide environment is at the origin of the different hydrogen bonding pattern of the two families of compounds.  相似文献   

6.
The acetonylgold(III) compound [Au(ppy)(CH2COCH3)Cl] (1) (ppy = 2-phenylpyridine) was unexpectedly obtained during the crystallization process of Au(III) lactate complex [Au(ppy)(CH3CHOHCOO)Cl]. This new structure prompted us to further study the role of Au(III) complexes on the carbon-hydrogen activation of ketones. Complex [Au(ppy)(CH2COCH3)NO3] (2) was synthesized by reacting [Au(ppy)(NO3)2] with acetone while the ketonyl Au(III) complex [Au(apd)Cl2] (3) (Hapd = 2-acetylpyridine) was obtained through carbon-hydrogen bond activation of the acetyl group. The crystal structures of 1 and 2 have common features: a square-planar Au(III) centre coordinated by one five-membered chelate ring, one acetonyl ligand and one anion (chloride or nitrate). Both structures show that carbon-hydrogen activation of acetone by 2-phenylpyridine-Au(III) complexes leads to the formation of acetonyl-Au(III) complexes. The Au-CH2 bond lengths (2.067(7) Å, 1 and 2.059(5) Å, 2) are similar to each other but longer than the Au-C (phenyl) bond lengths. The two softest ligands (carbanion) are also cis to each other in the thermodynamically most stable isomer. In complex 3, the σ-bonded acetyl group is confirmed by 13C DEPT NMR spectroscopy.  相似文献   

7.
The antimony(III) complexes [Sb(2Fo4Ph)Cl2] (1), [Sb(2Ac4Ph)Cl2] (2) and [Sb(2Bz4Ph)Cl2] (3) were prepared with N(4)-phenyl-2-formyl- (H2Fo4Ph), 2-acetyl- (H2Ac4Ph) and 2-benzoylpyridine (H2Bz4Ph) thiosemicarbazones. The antimony(III) complexes presented antitrypanosomal activity against the epimastigote and trypomastigote forms of Trypanosoma cruzi. Complexes (1) and (2) exhibited higher activity than the reference drugs benznidazole and nifurtimox.  相似文献   

8.
An investigation of the MII/X/L [MII = Co, Ni, Cu, Zn; X = Cl, Br, I, NCS, NO3, N3, CH3COO; L = 1-methyl-4,5-diphenylimidazole] general reaction system towards the detailed study of the intermolecular interactions utilized for controlling the supramolecular organization and the structural consequences on the structures produced has been initiated. Three representative complexes with the formulae [Co(NO3)2(L)2] (1), [Zn(NO3)2(L)2] (2) and [Co(NCS)2(L)2]·EtOH (3·EtOH) have been synthesized and characterized by spectroscopic methods and single-crystal X-ray analysis. Compounds 1 and 2 are isomorphous (tetragonal, I41cd) with their metal ions in a severely distorted octahedral Co/ZnN2O4 environment, while 3·EtOH crystallizes in P21/c with a tetrahedral CoN4 coordination. The structural analysis of 1, 2 and 3·EtOH reveals a common mode of packing among neighbouring ligands (expressed through intramolecular ππ interactions between the 4,5-diphenylimidazole moieties), enhancing thus the rigidity and stability of the complexes. The bent coordination of the two isothiocyanates in 3 [Co–NCS angles of 173.8(2) and 160.8(2)°] seems to be caused by intermolecular hydrogen bonding and crystal packing effects.  相似文献   

9.
The synthetic investigation of the NiII/M(NO3)3·6H2O/di-2-pyridyl ketone [(py)2CO] tertiary reaction system in EtOH has yielded triangular Ni2M cationic complexes (M = lanthanide, Y). The reaction between Ln(NO3)3·6H2O, Ni(ClO4)2·6H2O, (py)2CO and base (1:3:3:3) in EtOH under gentle heating gave the isostructural complexes [Ni2Ln{(py)2C(OEt)(O)}3{(py)2C(OH)(O)}(NO3)(H2O)](ClO4)2 (Ln = Gd, 2; Ln = Tb, 3) in high yields. The ligands (py)2C(OEt)(O) and (py)2C(OH)(O) are the monoanions of the hemiketal and gem-diol derivatives of (py)2CO, respectively, formed in situ in the presence of the metal ions. The cations of 2 and 3 consist of one 8-coordinate LnIII and two distorted octahedral NiII atoms in an essentially isosceles, triangular arrangement capped by a central μ3 atom of the unique 3.3011 (Harris notation) (py)2C(OH)(O) ligand. Each metal-metal edge is bridged by the deprotonated O atom of one 2.2011 (py)2C(OEt)(O) ligand. The isostructural complexes [Ni2M{(py)2C(OEt)(O)}4(NO3)(H2O)]2[M(NO3)5](ClO4)2 (M = Y, 4 ; M = Tb, 5 ; M = Dy, 6) were prepared by the 1:1 reaction of the mononuclear “metalloligand” [Ni(O2CMe){(py)2CO}{(py)2C(OH)2}](ClO4) (1) and M(NO3)3·6H2O in EtOH under mild heating in moderate to good yields. The structures of the dications of 4-6 are similar to those in 2 and 3, the only difference being the replacement of the unique 3.3011 (py)2C(OH)(O) ligand of the latter by one 3.3011 (py)2C(OEt)(O) group in the former. The YIII, TbIII and DyIII atoms in [M(NO3)5]2− are coordinated by five bidentate chelating nitrato groups. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands. Variable temperature, solid-state direct current magnetic susceptibility and magnetization studies were carried out on dried samples of 2-4. The data indicate ferromagnetic Ni?Ni and Ni?Gd exchange interactions, and an ST = 11/2 ground state for 2. Complex 3 is characterized by a high-spin ground state while the ferromagnetic Ni?Ni interaction for 2 is independently supported by the study of 4. No out-of-phase, alternating current susceptibility signals have been detected for 3 that would be indicative of SMM behavior.  相似文献   

10.
Palladium(II) complexes containing di-(2-pyridyl)-N-methylimine (1), di-(2-pyridyl)methanol (2) and di-(2-pyridyl)methyl-N,N-diethyldithiocarbamate (4) ligands were synthesized and characterized by 1H and 13C NMR in solution, IR and X-ray single crystal diffraction. Crystal structures of cis-dichloro[di-(2-pyridyl)-N-methylimine]palladium(II) (5), cis-dichloro[di-(2-pyridyl)methanol]palladium(II) (6) and cis-dichloro[di-(2-pyridyl)methyl-N,N-diethyldithiocarbamate]palladium(II) (7) showed a bidentate coordination mode of the di-(2-pyridyl)methane derivatives 1, 2 and 4. In these complexes is observed the formation of a five-membered chelate ring with the iminic ligand 1 and six-membered chelate rings with the pyridinic ligands 2 and 4. In all complexes the palladium atom displays a distorted square planar geometry.  相似文献   

11.
Complexes of [AuCl4] with 4,4′-dipyridylethane, 4,4′-dipyridylethene and 4,4′-bipyridine-N,N′-dioxide have been prepared by a solvent layering method. All three complexes pack in distinct organic and inorganic layers: [H2-dpa][AuCl4]Cl (1) and [H2-dpe][AuCl4]Cl (2) are isostructural and consist of layers of [AuCl4] anions alternating with hydrogen-bonded dipyridyl?Cl?dipyridyl layers. In [H-bpdo][AuCl4] (3), the organic layers consist instead of hydrogen-bonded bipyridyldioxide cations. This structure is the first report of a structure containing protonated 4,4′-bipyridine-1,1′-dioxide.  相似文献   

12.
The reaction of Mn(OAc)2·4H2O with bis(5-phenyl-2H-1,2,4-triazole)-3-yl-disulfane (H2ptds·2H2O) (1) yielded new complex [Mn(ptds)(o-phen)2] (2). It is observed that under similar conditions the reaction of Co(OAc)2 with H2ptds·2H2O (1) leads to thermolysis of the S-S bond of the disulfane to yield [Co(pts)(o-phen)2]·H2O·0.5C2H5OH, with the newly generated organic ligand 5-phenyl-2H-1,2,4-triazole-3-sulfinate, (pts)2−. The ligand H2ptds·2H2O (1), [Mn(ptds)(o-phen)2] (2) and [Co(pts)(o-phen)2]·H2O·0.5C2H5OH (3) crystallized into monoclinic, trigonal and triclinic crystal systems, respectively. The triazole ring nitrogen of the bidentate ligand chelates the Mn(II) center forming a seven membered chelate ring, while N, O donor sites of the resulting triazole sulfinate bond Co(II) to form a five membered chelate. The resulting complexes are paramagnetic and have a distorted octahedral geometry.  相似文献   

13.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

14.
The semirigid tridentate 8-(2-pyridinylmethylthio)quinoline ligand (Q1) is shown to form the structurally characterized transition metal complexes [Cu(Q1)Cl2] (1), [Co(Q1)(NO3)2] (2), [Cd(Q1)(NO3)2] (3), [Cd(Q1)I2] (4). [Cu(Q1)2](BF4)2·(H2O)2 (5), [Cu(Q1)2](ClO4)2·(CH3COCH3)2 (6), [Zn(Q1)2](ClO4)2(H2O)2 (7), [Cd2(Q1)2Br4] (8), [Ag2(Q1)2(ClO4)2] (9), and [Ag2(Q1)2(NO3)2] (10). Four types of structures have been observed: ML-type in complexes 14, in which the anions Cl, NO3 or I also participate in the coordination; ML2 type in complexes 57 without direct coordination of the anions BF4 or ClO4 and with more (Cu2+) or less (Zn2+) distorted bis-fac coordinated Q1; M2L2-type in complex 8, in which two Br ions act as bridges between two metal ions; and M2(μ-L)2-type in complexes 9 and 10, in which the ligand bridges two anion binding and Ag–Ag bonded ions. Depending on electron configuration and size, different coordination patterns are observed with the bonds from the metal ions to Npyridyl longer or shorter than those to Nquinoline. Typically Q1 acts as a facially coordinating tridentate chelate ligand except for the compounds 9 and 10 with low-coordinate silver(I). Except for 6 and 8, the complexes exhibit distinct constraining effects against both G(+) and G(-) bacteria. Complexes 1, 3, 4, 5, 7 have considerable antifungal activities and complexes 1, 5, 7, and 10 show selective effects to restrain certain botanic bacteria. Electrochemical studies show quasi-reversible reduction behavior for the copper(II) complexes 1, 5 and 6.  相似文献   

15.
A series of titanocene(III) alkoxides L2Ti(III)OR where L = Cp, R = Et(1b), tBu(1a), 2,6-Me2C6H3(1c), 2,6-tBu2-4-Me-C6H2(1d), or L = Cp*, R = Me(2e), tBu(2a), Ph(2f) was synthesized and subjected to reaction with [CpM(CO)3]2 [M = Mo, W], [CpRu(CO)2]2, and Co2(CO)8. The Ti(III) precursors 1a, 1c, 2a, 2e, and 2f reacted with [CpM(CO)3]2 [M = Mo, W] to form heterobimetallic complexes L2Ti(OR)(μ-OC)(CO)2MCp [M = Mo, W], of which Ti and M are linked by an isocarbonyl bridge. Reactions of these Ti(III) complexes with Co2(CO)8 resulted in formation of Ti-Co1 heterobimetallic complexes, from 2a, 2e, or 2f, or Ti-Co3 tetrametallic complexes, Cp2Ti(OtBu)(μ-OC)Co3(CO)9 from 1a, 1b, or 1c. The products were characterized by NMR, IR, and X-ray crystallography. Reaction mechanisms were proposed from these results, in particular, from steric/electronic effects of titanium alkoxides.  相似文献   

16.
Two novel Ni(II) complexes {[Ni(en)2(pot)2]0.5CHCl3} (3) {pot = 5-phenyl-1,3,4-oxadiazole-2-thione} (1) and [Ni(en)2](3-pytol)2 (4) {3-pytol = 5-(3-pyridyl)-1,3,4-oxadiazole-2-thiol} (2) have been synthesized using en as coligand. The metal complexes have been characterized by physical and analytical techniques and also by single crystal X-ray studies. The complexes 3 and 4 crystallize in monoclinic system with space group P21/a and P121/c, respectively. The complex 3 has a slightly distorted octahedral geometry with trans (pot) ligands while 4 has a square planar geometry around the centrosymmetric Ni(II) center with ionically linked trans (3-pytol) ligands. The π?π (face to face) interaction plays an important role along with hydrogen bondings to form supramolecular architecture in both complexes.  相似文献   

17.
Three complexes of composition [CrL(X)3], where L = 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine and X = Cl, N3, NCS are synthesized. They are characterized by IR, UV–Vis, fluorescence, EPR spectroscopic, and X-ray crystallographic studies. Structural studies reveal that the Cr(III) ion is coordinated by three N atoms of L in a meridional fashion. The three anions occupy the other three coordination sites completing the mer-N3Cl3 (1) and mer-N3N3 (2 and 3), distorted octahedral geometry. The Cr–N2 has a shorter length than the Cr–N1 and Cr–N3 distances and the order Cr–N(NCS) < Cr–N(N3) < Cr–Cl is observed. They exhibit some of the d–d transitions in the visible and intra-ligand transitions in the UV regions. The lowest energy d–d transition follows the trend [CrLCl3] < [CrL(N3)3] < [CrL(NCS)3] consistent with the spectrochemical series. In DMF, they exhibit fluorescence having π → π character. All the complexes show a rhombic splitting as well as zero-field splitting (zfs) in X-band EPR spectra at 77 K.  相似文献   

18.
Cis-[MLCl2] complexes of di-(2-pyridyl)pyrimidin-2-ylsulfanylmethane ligand (L), where M = Pd (1), and M = Pt (2) have been synthesized. Reaction of 1 with L in presence of Na[BF4] and hot acetonitrile produced the complex [PdL2](BF4)2 (3). Complexes 1-3 and ligand L have been characterized by elemental analyses, IR and NMR spectroscopy. Crystal structures of 1, 3 and L were determined by single crystal X-ray diffraction analyses, showing nonplanar structures with the pyridinic rings twisted around the bridging carbon and the ipso carbon bonds. 1 and 3 displayed a bidentate coordination of L to the palladium atom with the formation of six-membered chelate rings, where the local geometry at palladium atom was distorted square planar. In 3 the palladium atom was coordinated to two dipyridyl ligands through two of the pyridinic nitrogen atoms to form a cationic complex stabilized by two tetrafluoroborate counter-ions.  相似文献   

19.
The use of carboxylates in the synthesis of 3d/4f clusters, with or without a second organic ligand, has afforded a series of tetranuclear M2Gd2 complexes (M = Fe or Mn), and two new trinuclear M2Gd (M = Fe or Mn) molecular compounds. Only one of these, [Mn2Gd2O2(O2CBut)8(HO2CBut)4] (1), does not contain a multidentate chelate ligand. Two other similar tetranuclear clusters were synthesized from the use of triethanolamine (teaH3) and 1,1,1-tris(hydroxymethyl)ethane (thmeH3). [Mn2Gd2(OH)2(O2CPh)4(NO3)2(teaH)2] (2) has very similar structure with 1, bearing a defective incomplete double-cubane core bridged by μ3-O atoms, whereas in the core of [NHEt3]2[Fe2Gd2(O2CPh)4(thme)2(NO3)4] (3) the thme3− ligand caps the two incomplete cubane units, providing the triply-bridging alkoxides needed for bridging. Two new oxide-centered triangular clusters were synthesized bearing the Schiff-based chelate 2-{[2-(dimethylamino)ethyl]methylamino}ethanol (dmemH), namely [Fe2GdO(O2CBut)2(dmem)2(NO3)3] (4), and [Mn2GdO(O2CBut)2(dmem)2(NO3)3] (5). Magnetic susceptibility measurements and/or reduced magnetization studies established that complexes 1 and 3 have an S = 5 ground state, complex 2 has S = 4, and complexes 4 and 5 are S = 7/2 in their ground states. These complexes portray the feasibility of obtaining products bearing metal cores commonly found in homometallic clusters, even when these include metals with completely different coordination chemistry and electronic structure, such as lanthanides.  相似文献   

20.
A series of fourteen octahedral nickel(IV) dithiocarbamato complexes of the general formula [Ni(ndtc)3]X·yH2O {ndtc stands for the appropriate dithiocarbamate anion, X stands for ClO4 (1-8; y = 0) or [FeCl4] (9-14; y = 0 for 9-12, 1 for 13 and 0.5 for 14} was prepared by the oxidation of the corresponding nickel(II) complexes, i.e. [Ni(ndtc)2], with NOClO4 or FeCl3. The complexes, involving a high-valent NiIVS6 core, were characterized by elemental analysis (C, H, N, Cl and Ni), UV-Vis and FTIR spectroscopy, thermal analysis and magnetochemical and conductivity measurements. The X-ray structure of [Ni(hmidtc)3][FeCl4] (9) was determined {it consists of covalently discrete complex [Ni(hmidtc)3]+ cations and [FeCl4] anions} and this revealed slightly distorted octahedral and tetrahedral geometries within the complex cations, and anions, respectively. The Ni(IV) atom is six-coordinated by three bidentate S-donor hexamethyleneiminedithiocarbamate anions (hmidtc), with Ni-S bond lengths ranging from 2.2597(5) to 2.2652(5) Å, while the shortest Ni···Cl and Ni···Fe distances equal 4.1043(12), and 6.2862(6) Å, respectively. Moreover, the formal oxidation state of iron in [FeCl4] as well as the coordination geometry in its vicinity was also proved by 57Fe Mössbauer spectroscopy in the case of 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号