首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An investigation of the MII/X/L [MII = Co, Ni, Cu, Zn; X = Cl, Br, I, NCS, NO3, N3, CH3COO; L = 1-methyl-4,5-diphenylimidazole] general reaction system towards the detailed study of the intermolecular interactions utilized for controlling the supramolecular organization and the structural consequences on the structures produced has been initiated. Three representative complexes with the formulae [Co(NO3)2(L)2] (1), [Zn(NO3)2(L)2] (2) and [Co(NCS)2(L)2]·EtOH (3·EtOH) have been synthesized and characterized by spectroscopic methods and single-crystal X-ray analysis. Compounds 1 and 2 are isomorphous (tetragonal, I41cd) with their metal ions in a severely distorted octahedral Co/ZnN2O4 environment, while 3·EtOH crystallizes in P21/c with a tetrahedral CoN4 coordination. The structural analysis of 1, 2 and 3·EtOH reveals a common mode of packing among neighbouring ligands (expressed through intramolecular ππ interactions between the 4,5-diphenylimidazole moieties), enhancing thus the rigidity and stability of the complexes. The bent coordination of the two isothiocyanates in 3 [Co–NCS angles of 173.8(2) and 160.8(2)°] seems to be caused by intermolecular hydrogen bonding and crystal packing effects.  相似文献   

2.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

3.
Several new 1D coordination polymers have been synthesised using the anionic ligand carbamoyldicyanomethanide, C(CN)2(CONH2) (cdm). The polymeric complexes [Cu(cdm)2(py)2]·2MeOH (1), [Cu(cdm)2(4-Etpy)2]·2MeOH (2), [Cu(cdm)2(3,5-Me2pzH)2]·2MeOH (3) and [Cu(cdm)2(3-HOCH2py)2]·2MeOH (4) (py = pyridine; 3,5-Me2pzH = 3,5-dimethylpyrazole) contain Cu(II) atoms bridged by μ2-(N,N′) cdm ligands between equatorial and axial coordination sites. The use of monodentate co-ligands brings about polymeric products, in contrast to the use previously of chelating co-ligands which facilitate the formation of discrete products. These 1D polymeric complexes are connected by hydrogen bonding between the amide functionalities and the lattice solvent. In the structures of 3 and 4 the neutral ligands also contain hydrogen bond donor groups that supplement the amide ring motif. Two other complexes have been obtained that are polymeric chains of alkoxide-bridged Cu(II) dimers. The complexes [Cu(cdm)(MeO)(2-amp)] (5) and [Cu(cdm)(dmap)] (6) (2-amp = 2-(aminomethyl)pyridine and dmap = dimethylaminopropoxide) are remarkably similar despite the different ligands that they contain. Bridging between dimers is via μ2-(N,O) cdm ligands, consequently altering the nature of the hydrogen bonding between adjacent chains compared to the simple polymeric species 13.  相似文献   

4.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

5.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

6.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

7.
The reaction between uranyl nitrate hexahydrate and phenolic ligand precursor [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-4-amino-1-butanol) · HCl], H3L1 · HCl, leads to a uranyl complex [UO2(H2L1)2] (1a) and [UO2(H2L1)2] · 2CH3CN (1b). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-4-amino-1-butanol)H3L2 · HCl], H3L2 · HCl, yields a uranyl complex with a formula [UO2(H2L2)2] · CH3CN (2). The ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-5-amino-1-pentanol) · HCl], H3L3 · HCl, produces a uranyl complex with a formula [UO2(H2L3)2] · 2CH3CN (3) and the ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-5-amino-1-pentanol) · HCl], H3L4 · HCl, leads to a uranyl complex with a formula [UO2(H2L4)2] · 2CH3CN (4). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol) · HCl], H3L5 · HCl, leads to a uranyl complex with a formula [UO2(H2L5)2] · 4toluene (5). The complexes 15 are obtained using a molar ratio of 1:2 (U to L) in the presence of a base (triethylamine). The molecular structures of 1a, 1b, 3, 4 and 5 were verified by X-ray crystallography. All complexes are neutral zwitterions and have similar centrosymmetric, mononuclear, distorted octahedral uranyl structures with the four coordinating phenoxo ligands in an equatorial plane. In uranyl ion extraction studies from water to dichloromethane with ligands H3L1 · HCl–H3L5 · HCl, ligands H3L1 · HCl, H3L4 · HCl and H3L5 · HCl are the most effective ones.  相似文献   

8.
A comparative investigation of the coordination behaviour of the 17-membered, N3O2-donor macrocycle, 1,12,15-triaza-3,4:9,10-dibenzo-5,8-dioxacycloheptadecane, L, with the soft metal ions Ag(I), Cd(II), Hg(II), and Pd(II) is reported. The X-ray structures of 12 complexes have been determined and a range of structural types, including both mononuclear and dinuclear species, shown to occur. In particular cases the effect of anion variation on the resulting structures has been investigated; L reacts with AgX (X = NO3, ClO4, PF6, OTf and CN) to yield related 2:2 (metal:ligand) complexes of types [Ag2L2(NO3)2] (1), [Ag2L2](ClO4)2 · 2DMF (2), [Ag2L2](PF6)2 · 2DMF (3), [Ag2L2](OTf)2 (4) and [Ag2L2(μ-CN)][Ag(CN)2] · H2O (5). In all five complexes the ether oxygens of each ring are unbound. In 1–4 the macrocycles are present in sandwich-like arrangements that shield the dinuclear silver centres, with each silver bonded to two nitrogen donors from one L and one nitrogen from a second L. A Ag···Ag contact is present between each metal centre such that both centres can be described as showing distorted tetrahedral geometries. In the case of 5 a rare single μ2-κC:κC symmetrically bridging two-electron-donating cyano bridge links silver ions [Ag···Ag distance, 2.7437(10) Å]; the macrocyclic ligands are orientated away from the dinuclear metal centres. In contrast to the behaviour of silver, reaction of cadmium(II) perchlorate with L resulted in a mononuclear sandwich-like complex of type [CdL2](ClO4)2 · CH3CN (6). Again, the ether oxygens do not coordinate, with each L binding to the cadmium centre only via its three nitrogen donors in a facial arrangement such that a distorted octahedral coordination geometry is attained. Reaction of L with HgX2 (X = ClO4, SCN and I) yielded the monomeric species [HgL(ClO4)2] (7), [HgL(SCN)2]·CH3CN (8) and [Hg2L2](HgI4)2 · 2L (9), in which all five donors of L are bound to the respective mercury centres. However, reaction of L with Hg(NO3)2 in dichloromethane/methanol gave a mononuclear sandwich-like complex [HgL2](NO3)2 · 2CH3OH (10) without anion coordination. Reaction of K2PdCl4 and Pd(NO3)2 with L yielded the 1:1 complexes [PdLCl]Cl · H2O (11) and [PdL(NO3)]NO3 · CH3OH (12), respectively, in which the metal is bound to three nitrogen donors from L along with the corresponding chloride or nitrate anion. Each palladium adopts a distorted square-planar coordination geometry; once again the ether oxygens are not coordinated.  相似文献   

9.
Self assembly of N-salicylidene 2-aminopyridine (L1H) with Cu(NO3)2·3H2O affords [Cu4(L1)4(NO3)3(CH3OH)][Cu(L1)(NO3)2](2-aminopyridinium)(NO3)·5CH3OH (1) which is composed of an asymmetric [2 × 2] grid-like cationic complex that co-crystallizes with a Cu(II) mononuclear anion. This remarkable tetranuclear unit presents three penta-coordinated and one hexa-coordinated Cu(II) sites. This quadruple helicate structure reveals strong anti-ferromagnetic coupling (J = −340(2) cm−1) between Cu(II) ions through a double alkoxo bridge. Reacting L1H with Cu(NO3)2·3H2O in slightly different conditions affords however a more symmetric tetranuclear grid-like complex: [Cu4(L1)4(NO3)2(OH)2](2-aminopyridinium)(OH)·CH3OH) (2). A dinuclear Ni(II) complex, [Ni2(L2)2(L2H)2(NCS)2(CH3OH)2]·2CH3OH (3), obtained with another related donor ligand (L2H N-salicylidene 3-aminomethylpyridine) was also prepared.  相似文献   

10.
Two structurally related flexible imidazolyl ligands, bis(N-imidazolyl)methane (L1) and 1,4-bis(N-imidazolyl)butane (L2), were reacted with Cu(II), Co(II) and Ni(II) salts of aliphatic/aromatic dicarboxylic acids resulting in the formation of a number of novel metal–organic coordination architectures, [CuB2(ox)2(L1)2(H2O)2] · 4H2O (1) (ox = oxalate), [Cu(pdc)(L2)1.5] · 4H2O (2, pdc = pyridine-2,6-dicarboxylate), [Co(L)2(H2O)2](tp) · 4H2O (3, tp = terephthalate), [Ni(L1)2(H2O)2](ip) · 5H2O (4, ip = isophthalate), [Cu2(L1)4(H2O)4](tp)2 · 7H2O (5), [Co(mal)(L1)(H2O)] · 0.5MeOH (6, mal = malonate), [Co(pdc)(L1)(H2O)] (7). All the complexes have been structurally characterized by X-ray diffraction analysis. The different coordination modes of the dicarboxylate anions, due to their chain length, rigidity and diimidazolyl functionality, lead to a wide range of different coordination structures. The coordination polymers exhibit 1D single chain, ladder, 2D sheet and 2D network structures. The aliphatic and aromatic dicarboxylates can adopt chelating μ2 and chelating-bridging μ3 coordination modes, or act as uncoordinated counter anions. The central metal ions are coordinated in N2O4, N4O2, N2O3 and N3O3 fashions, depending on the ancillary ligands. The topology of 1 gives rise to macrocycles which are connected through hydrogen bonds to form 1D chains, whereas compound 2 exhibits a 1D polymeric ladder in which the carboxylate acts as a pincer ligand. Compounds 35 show doubly bridged 1D chains, and the dicarboxylate groups are not coordinated but form 2D corrugated sheets with water molecules intercalated between the cationic layers. Compound 6 has a 2D network sheet structure in which each metal ion links three neighboring Co atoms by the bis(N-imidazolyl)methane ligand. The cobalt compound 7, with a 2D polymeric double sheet structure, is built from pincer carboxylate (pdc) and 1,4-bis(N-imidazolyl)methane ligands.  相似文献   

11.
The reactions of the polydentate ligand 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (L) with AgX (X = CH3COO, ClO4 and CF3SO3) afforded the complexes [Ag2(L)(CH3COO)2] (1), [Ag2(L)3(ClO4)2] (2), and [Ag(L)(CF3SO3)] (3), whereas the reaction of L with Ag2SO4 in MeOH/H2O system afforded {[Ag2(L)3(H2O)3][SO4] · 9H2O} (4). The EA and IR have been recorded and all the complexes have been structurally characterized by X-ray crystallography, confirming that complexes 14 are two-dimensional coordination polymeric frameworks. The bidentate L ligands in complexes 3 and 4 adopt both the syn and anti conformation and those in 1 and 2 adopt the anti conformation only. The anions CH3CO2 in complex 1 bridge the Ag(I) atoms in η1, η2, μ3-coordination mode forming a 1-D zig-zag –[Ag(CH3COO)]n– chains, while the anions ClO4, CF3SO3 and SO42− in complexes 24 are not coordinated to the Ag(I) atoms, but all of them play an important roles in linking cationic 2-D frameworks into 3-D supramolecular structures.  相似文献   

12.
The reaction of CuSO4 · H2O with 4-bpytm [4-bpytm = bis(4-pyridylthio)methane] in EtOH afforded the complex [Cu(SO4)(4-bpytm)(H2O)3] · H2O (1 · H2O) while the reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH afforded the complex [Cu(NO3)2(4-bpytm)2] · H2O (2 · H2O). The reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH/dmf under microwave irradiation afforded the pseudo-polymorph [Cu(NO3)2(4-bpytm)2] · Solv (2 · Solv). Compound 1 · H2O forms helical chains while compounds 2 · H2O and 2 · Solv are 2D coordination polymers with a (4,4) topology based on rhombic grids in 2 · H2O and on a parquet motif in 2 · Solv. The 3D supramolecular organization through hydrogen bonding is analyzed for the three compounds and their thermal behaviour was also investigated.  相似文献   

13.
In this article, eight new silver coordination polymers constructed from two structurally related ligands, 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole) (bbmb) and 1,1′-(1,4-butanediyl)bis(2-ethylbenzimedazole) (bbeb), have been synthesized: [Ag(L1)(bbmb)]·C2H5OH·H2O (1), [Ag(L2)(bbmb)]·C2H5OH (2), [Ag(L3)(bbmb)] (3), [Ag2(L4)(bbmb)2]·C2H5OH (4), [Ag(L2)(bbeb)]·C2H5OH (5), [Ag(L5)(bbeb)]·CH3OH (6), [Ag2(L6)2(bbeb)]·H2O (7), and [Ag2(L7)(bbeb)2]·4(H2O) (8), where L1 = benzoate anion, L2 = p-methoxybenzoate anion, L3 = 2-amino-benzoate anion, L4 = oxalate anion, L5 = cinnamate ainon, L6 = 3-amino-benzoate anion, and L7 = fumaric anion. In 1-3, 5 and 6, the bidentate N-donor ligands (bbmb and bbeb) in trans conformations bridge neighboring silver centers to form 1D single chain structures. The carboxylate anions are attached on both sides of the chains. Moreover, 1 and 3 are extended into 2D layers, while 2 and 6 are extended into 3D frameworks through π-π interactions. In 4, the bbmb ligands bridge adjacent Ag(I) centers to form -Ag-bbmb-Ag- chains, which are further connected by L4 anions to form a 2D layer. The resulting layers are extended into 3D frameworks through strong π-π interactions. In 7, the N-donor ligands (bbeb) in trans conformations bridge two silver centers to generate a [Ag2(bbeb)]2+ unit. The adjacent [Ag2(bbeb)]2+ units are further connected via the L6 anions to form a 1D ladder chain. Moreover, the structure of compound 7 is extended into a 3D framework through hydrogen bonding and π-π interactions. In 8, two Ag(I) cations are bridged by two bbeb ligands in cis conformations to form a [Ag2(bbeb)2]2+ ring, which are further linked by L7 anions to generate a 1D string chain. Furthermore, the hydrogen bonding and π-π interactions link L7 anions to form a 2D supramolecular sheet. Additionally, the luminescent properties of these compounds were also studied.  相似文献   

14.
Four new silver(I) complexes constructed with 2-(4-pyridyl)benzimidazole, namely, [Ag(PyBIm) · H2O] · NO3 (1), [Ag(PyBIm) · H2O] · ClO4 (2), [Ag2(PyBIm)2] · (SiF6) · 2H2O (3) and [Ag(PyBIm) · (HBDC)] (4) (PyBIm = 2-(4-pyridyl)benzimidazole, BDC = 1,3-benzenedicarboxylate) have been synthesized and characterized by X-ray crystallography. All the silver(I) atoms in complexes 14 are bridged by the different PyBIm ligands via NPy and NBIm into one-dimensional “zigzag” chains. The anions do not coordinate to the silver(I) atoms and only act as counter ions in complexes 13. Due to the anions, different hydrogen bonding systems are found in those three compounds, resulting in the different crystal packing. Through hydrogen bonding interactions, the structures of complexes 13 display a double layer, a three-dimensional framework and a novel double chain, respectively. In complex 4, the HBDC anions act not only as a counter ion but also as bridging ligands, which lead the “zigzag” [Ag2(PyBIm)2] chain into a two-dimensional undulating sheet. The sheets are connected through hydrogen-bonding as well as π–π interactions into a three-dimensional framework. The thermal stabilities of the four complexes and anion exchange properties of complexes 2 and 3 were also studied.  相似文献   

15.
The reaction of sodium dimethyl(phenylsulfonyl)amidophosphate NaL (HL = C6H5SO2NHP(O)(OCH3)2) with Cu(NO3)2 · 6H2O and o-bpe (1,2-bis(pyridine-2-yl)ethane) in appropriate ratios, afford the formation of 1D coordination polymer [Cu(L)2 · o-bpe]n in good yield. The crystal structures of HL (1) and [Cu(L)2 · o-bpe]n (2) are reported. In the crystal package the molecules of 1 are linked by intermolecular hydrogen bonds formed by the phosphoryl oxygen atoms which serve as acceptors and nitrogen atoms of amide groups as donors. The crystal structure of 2 indicates the presence of unsaturated Cu(L)2 unit bridged by o-bpe ligand in the one-dimensional polymeric chain. The Cu(II) atoms have distorted 4 + 2 octahedral CuO4N2 environment formed by the oxygen atoms belonging to the sulfonyl and phosphoryl groups of two deprotonated chelate ligands and nitrogen atoms of the bridging o-bpe ligands.  相似文献   

16.
5-Ferrocenylpyrimidine (FcPM) reacts with dinuclear copper(II) carboxylates ([Cu2(RCOO)4]; R = C6H5, C5H11, CH3) to produce one-dimensional coordination polymers [Cu2(C6H5COO)4(FcPM)]n (1), [Cu2(C5H11COO)4(FcPM)]n · nCH3CN (2), and a discrete tetranuclear complex [Cu2(CH3COO)4(FcPM)2] (3). Compounds 1 and 2 show similar zigzag chain structures, comprising alternate linking of FcPM and dinuclear copper(II) units, whereas the structure of 3 corresponds to the local structural motifs of 1 and 2. Reaction of FcPM with zinc salts (ZnX2; X = NO3, SCN) affords zinc-centered ferrocenyl cluster complexes, [Zn(NO3)2(FcPM)3] (4) and [Zn(SCN)2(FcPM)2] · 0.5H2O (5), with varying M:L ratios. FcPM acts as a bidentate ligand in 1 and 2, and as a monodentate ligand in the others.  相似文献   

17.
A series of new HgI2 organic polymeric complexes, [Hg2(L1)I4]n (1), [Hg(L2)I2]n (2), [Hg(L3)I2]n (3), [Hg2(L4)I4]n (4), [Hg(L5)I2]n (5), [Hg(L6)I3](HL6) (6) {L1 = 1,4-bis(2-pyridyl)-2,3-diaza-1,3-butadiene, L2 = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, L3 = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, L4 = 2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene, L5 = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene and L6 = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene} was prepared from reactions of mercury(II) iodide with six organic nitrogen donor-based ligands under thermal gradient conditions using the branched tube method. All these compounds were structurally characterized by single-crystal X-ray diffraction. The HgI2 coordination polymers obtained with the ligands L2, L3 and L5 show one-dimensional zig-zag motifs and in these compounds the HgI2 units are connected to each other by the ligands L2, L3 and L5 through the pyridyl nitrogen atoms. The L1 and L4 ligands in the compounds 1 and 4 act as both a chelating and bridging group. In the compound 6 the ligand L6 acts as a monodentate ligand, resulting form a discrete compound. The thermal stabilities of compounds 16 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

18.
Three novel CoII coordination polymers [Co(Dpq)2(1,4-NDC)0.5] · (1,4-HNDC) (1), [Co(Dpq)(2,6-NDC)] (2), and [Co2(Dpq)2(BPEA)4(H2O)] · H2O (3) have been obtained from hydrothermal reaction of cobalt nitrate with the mixed ligands dipyrido[3,2-d:2′,3′-f]quinoxaline (Dpq) and three dicarboxylate ligands with different spacer length [1,4-naphthalene-dicarboxylic acid (1,4-H2NDC), 2,6-naphthalene-dicarboxylic acid (2,6-H2NDC) and biphenylethene-4,4′-dicarboxylic acid (BPEA)]. All these complexes are fully structurally characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Single-crystal X-ray analysis reveal that complex 1 is infinite one-dimensional (1-D) chains bridged by 1,4-NDC ligands, which are extended into a two-dimensional (2-D) supramolecular network by π-π interactions between the Dpq molecules. Complex 2 is a distorted three-dimensional (3-D) PtS network constructed from infinite Co-O-C rod units. Complex 3 has a 5-fold interpenetrated 3-D structure with diamondoid topology based on dinuclear [Co2(CO2)22-OH2)N4O2] units and BPEA molecules. The different structures of complexes 1-3 illustrate the influence of the length of dicarboxylate ligands on the self-assembly of polymeric coordination architectures. In addition, the thermal properties of complexes 1-3 and fluorescent properties of complexes 2 and 3 have been investigated in the solid state.  相似文献   

19.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

20.
The syntheses of five new aminoalkylbis(phenolate) ligands (as hydrochlorides) and their uranyl complexes are described. The reaction between uranyl nitrate hexahydrate and phenolic ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminopropane) · HCl], H2L1 · HCl, forms a uranyl complex [UO2(HL1)2] · 2CH3CN (1). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane) · HCl], H2L2 · HCl, forms a uranyl complex with a formula [UO2(HL2)2] · 2CH3CN (2). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methyl benzyl)-1-aminohexane) · HCl], H2L3 · HCl, yields a uranyl complex with a formula [UO2(HL3)2] · 2CH3CN (3) and the ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-cyclohexylamine) · HCl], H2L4 · HCl, yields a uranyl complex with a formula [UO2(HL4)2] (4). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-benzylamine) · HCl], H2L5 · HCl, forms a uranyl complex with a formula [UO2(HL5)2] · 2MeOH (5). The molecular structures of 1, 2′ (2 without methanol), 3, 4 and 5 were verified by X-ray crystallography. The complexes 15 are neutral zwitterions which form in a molar ratio of 1:2 (U to L) in the presence of a base (triethylamine) and bear similar mononuclear, distorted octahedral uranyl structures with the four coordinating phenoxo ligands forming an equatorial plane and resulting in a centrosymmetric structure for the uranyl ion. In uranyl ion extraction studies from water to dichloromethane with ligands H2L1 · HCl–H2L5 · HCl, the ligands H2L2 · HCl and H2L4 · HCl are the most effective ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号