首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative investigation of the coordination behaviour of the 17-membered, N3O2-donor macrocycle, 1,12,15-triaza-3,4:9,10-dibenzo-5,8-dioxacycloheptadecane, L, with the soft metal ions Ag(I), Cd(II), Hg(II), and Pd(II) is reported. The X-ray structures of 12 complexes have been determined and a range of structural types, including both mononuclear and dinuclear species, shown to occur. In particular cases the effect of anion variation on the resulting structures has been investigated; L reacts with AgX (X = NO3, ClO4, PF6, OTf and CN) to yield related 2:2 (metal:ligand) complexes of types [Ag2L2(NO3)2] (1), [Ag2L2](ClO4)2 · 2DMF (2), [Ag2L2](PF6)2 · 2DMF (3), [Ag2L2](OTf)2 (4) and [Ag2L2(μ-CN)][Ag(CN)2] · H2O (5). In all five complexes the ether oxygens of each ring are unbound. In 1–4 the macrocycles are present in sandwich-like arrangements that shield the dinuclear silver centres, with each silver bonded to two nitrogen donors from one L and one nitrogen from a second L. A Ag···Ag contact is present between each metal centre such that both centres can be described as showing distorted tetrahedral geometries. In the case of 5 a rare single μ2-κC:κC symmetrically bridging two-electron-donating cyano bridge links silver ions [Ag···Ag distance, 2.7437(10) Å]; the macrocyclic ligands are orientated away from the dinuclear metal centres. In contrast to the behaviour of silver, reaction of cadmium(II) perchlorate with L resulted in a mononuclear sandwich-like complex of type [CdL2](ClO4)2 · CH3CN (6). Again, the ether oxygens do not coordinate, with each L binding to the cadmium centre only via its three nitrogen donors in a facial arrangement such that a distorted octahedral coordination geometry is attained. Reaction of L with HgX2 (X = ClO4, SCN and I) yielded the monomeric species [HgL(ClO4)2] (7), [HgL(SCN)2]·CH3CN (8) and [Hg2L2](HgI4)2 · 2L (9), in which all five donors of L are bound to the respective mercury centres. However, reaction of L with Hg(NO3)2 in dichloromethane/methanol gave a mononuclear sandwich-like complex [HgL2](NO3)2 · 2CH3OH (10) without anion coordination. Reaction of K2PdCl4 and Pd(NO3)2 with L yielded the 1:1 complexes [PdLCl]Cl · H2O (11) and [PdL(NO3)]NO3 · CH3OH (12), respectively, in which the metal is bound to three nitrogen donors from L along with the corresponding chloride or nitrate anion. Each palladium adopts a distorted square-planar coordination geometry; once again the ether oxygens are not coordinated.  相似文献   

2.
The synthesis of complexes of (η5C5H4P(O)Ph2)2Fe = L with lanthanide nitrates is described. The single crystal X-ray structures for La(NO3)3L(μ-L)La(NO3)3L (1), [Eu(NO3)2L2]2[Eu(NO3)5] (2), [Ho(NO3)2L2]2[Ho(NO3)5] (3) and [Lu(NO3)2L2] NO3 (4) are reported. Trends in Ln–O bond distances cannot be explained by the lanthanide contraction alone. The cyclic-voltammetric (CV) oxidation–reduction behaviour of 1, 2, 4 and Dy(NO3)3L2 · 2H2O is described. This was reversible on a timescale of a few seconds in all cases. In our hands the CV behaviour of L also seemed reversible on this timescale, although attempted chemical oxidation of L led to the isolation of [FeL2(NO3)2]NO3 (5) which was characterised by X-ray crystallography.  相似文献   

3.
Two new isomorphous tetranuclear complexes [Cu4L2(4,4′-bipy)2]·(ClO4)4·2CH3CN·2H2O (1) and [Zn4L2(4,4′-bipy)2]·(ClO4)3·CH3O·4H2O (2) have been obtained and fully characterized (where bipy = bipyridine, H2L = macrocycle is the [2+2] condensation product of 2,6-diformyl-4-fluoro-phenol and 1,4-diaminobutane). They exhibit wheel-like configuration in which two 4,4′-bipy molecules connect two dinuclear [M2L]2+ units. The interactions of the complexes with calf thymus DNA were studied by UV-Vis and CD spectroscopic techniques. The binding constants of 1 and 2 are 2.27 × 106 and 3.89 × 105 M−1, respectively. The magnetic measurement of 1 reveals that there are strong antiferromagnetic coupling (J = -272.6 cm−1) between two Cu(II) ions in the macrocyclic unit and ferromagnetic interaction (j′ = 41.7) between the Cu(II) ions in two adjacent macrocyclic units. Furthermore, the cyclic voltammogram of 1 shows that it undergoes two quasi-reversible processes with the half wave potentials -0.232 and -0.606 V, respectively.  相似文献   

4.
1D heterometallic coordination polymer of [(FeII(L)2)(MnIII(salen))(ClO4) · 2CH3CN · CH3OH] (1 · 2CH3CN · CH3OH) has been built through a metalloligand approach (L = hydrotris (1,2,4-triazolyl)borate). Ferrous [FeII(L)2] moiety can be easily incorporated into further extended networks by the facile reduction of ferric antiprismatic [FeIII(L)2]+ metalloligand due to the reducing ability of borate ligands during the reaction. And more, hydroquinone facilitates the reduction. Therefore, we present single crystal X-ray structure analysis of 1 · 2CH3CN · CH3OH along with X-ray absorption spectroscopy to confirm the reduction of iron centres.  相似文献   

5.
The synthesis and structural chemistry of four new divalent transition metal complexes of the fluorene ligands 4,5-diazaspirobifluorene (L1) and bis-9-biphenyl-4,5-diazafluorenyl peroxide (L2), [Cu3(L1)4(NO3)6(H2O)2] · 2CH3CN (1), [Cu(L1)(CH3CO2)2(H2O)] · 2H2O (2), [Cd(L1)2(NO3)2] · DMF (3) (DMF = N,N-dimethylformamide) and [Zn2(L2)(μ-Cl)2Cl2] (4) are described. Single-crystal X-ray diffraction analysis reveal that the four complexes exhibit various frameworks due to diverse coordination modes and different conformations of ligands L1 or L2, as well as nitrate, acetate or chloro counterions. L1 in complexes 1, 2 and 3 present an asymmetric rigid bidentate ligand with two nitrogen atoms as the donor sites. Novel complex 4 was formed through complexation between conformationally bent shaped peroxide ligands and zinc(II) dichlorides that adopt a linear coordination geometry, which can also give rise to extended polymeric chains with a zigzag secondary structure.  相似文献   

6.
The reaction of CuSO4 · H2O with 4-bpytm [4-bpytm = bis(4-pyridylthio)methane] in EtOH afforded the complex [Cu(SO4)(4-bpytm)(H2O)3] · H2O (1 · H2O) while the reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH afforded the complex [Cu(NO3)2(4-bpytm)2] · H2O (2 · H2O). The reaction of 4-bpytm with Cu(NO3)2 · 3H2O in EtOH/dmf under microwave irradiation afforded the pseudo-polymorph [Cu(NO3)2(4-bpytm)2] · Solv (2 · Solv). Compound 1 · H2O forms helical chains while compounds 2 · H2O and 2 · Solv are 2D coordination polymers with a (4,4) topology based on rhombic grids in 2 · H2O and on a parquet motif in 2 · Solv. The 3D supramolecular organization through hydrogen bonding is analyzed for the three compounds and their thermal behaviour was also investigated.  相似文献   

7.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

8.
Reaction of copper(II) acetate, lanthanium(III) or gadolinium(III) nitrate (1/5 equiv.) with pyrazinohydroxamic acid (H2Pyzha) in DMF led to a series of new heterobimetallic 15-metallacrown-5 complexes. In a MeOH/H2O solution the complexes exist as molecular unassociated metallacrowns. In solid state their structures are more complicated as it has been confirmed by X-ray analysis: discrete molecular metallacrowns [Gd(NO3)2{Cu(pyzha)}5(DMF)4(NO3)] · 0.5C6H6 · H2O (1), [Gd(NO3)2{Cu(pyzha)}5(DMF)5](NO3) · 1.5DMF · 0.5H2O (2), [La(NO3)2{Cu(pyzha)}5(DMF)5]NO3 · 1.5DMF · 2C6H6 (3) are solvates, whereas compound [{La(NO3)2{Cu(pyzha)}5(DMF)5}22-NO3)](NO3) · 3DMF (4) is a dimer, where μ-bridged nitrate links two copper centres of the adjacent metallamacrocycles. Complex [Gd(NO3)2{Cu(pyzha)}5(DMF)2(H2O)(NO3)] · CH2Cl2 · DMF (5) self-associates into a polymer chain by means of one pyrazine moiety and the copper ring atom. Reaction of the molecular metallacrowns with excess of inorganic salts CdBr2 or Cu(OAc)2 proceeds as anion methathesis process affording heteroanionic metallacrowns: molecular [Gd(NO3)2{Cu(pyzha)}5(DMF)5] [Gd(NO3)2{Cu(pyzha)}5(DMF)4(H2O)][CdBr4] · 1.5DMF (6), and 3D hydrogen bonded polymer [La(μ2-OAc)(H2O)3{Cu(pyzha)}5 (H2O)4(NO3)](NO3) · 4H2O (7).  相似文献   

9.
Hg(TePh)2 (Ph = phenyl) reacts with CdI2(PPh3)2, PPhMe2 (Me = methyl), and PPh3/Zn(NO3)2·4H2O to give the compounds [Hg4(TePh)7IPy]n (Py = pyridine) (1), [Hg8Te(TePh)14(PPhMe2)2]·0.5DMF (DMF = dimethylformamide) (2) and [Hg11(TePh)18Te2Py3]n (3).While 1 and 3 assemble polymeric clusters, 2 can be described as a super tetrahedron with a Te2- ion located in the center. The geometric topology of cluster 3, together with some experimental evidences, suggests that its core is attained by the spontaneous fusion of clusters 1 and 2.  相似文献   

10.
《Polyhedron》2012,31(1):51-57
Condensation of picolinaldehyde with methyl 4-amino-3-hydroxy-benzoate resulted in the acquisition of a tridentate Schiff-base ligand (HL) which contains a structural moiety typical of octahedrally cored grid-type analogs. Reactions of HL with Zn(NO3)2 in the presence of Ln(NO3)3 [Ln = Sm(III), Tb(III) and Yb(III)] result in two types of complexes, viz. [Zn(HL)(L)]2[Ln(NO3)5] [Sm(III), 1a and Tb(III), 1b] and [Zn(HL)L]2[Yb(NO3)5]·C3H6O (1c). Despite applying two different synthetic protocols, the transition metal ion displayed a greater propensity towards the meridional tridentate pocket, which is reflected by XRD analysis, the ESI-MS technique and further supported by elemental analysis and IR characterization of each compound. In addition, we have compared the luminescence properties of 1a, 1b and 1c with the previously synthesized [Zn(HL)(L)]2[Zn(NO3)4] (1d) to investigate whether a different metal in the outer coordination sphere could somehow tune the compounds’ spectral behavior.  相似文献   

11.
A template 2:2:4 condensation of 2,6-diformyl-4-methyl-phenol, triethylenetetramine and zinc acetate gave rise to the crystallisation of [{Zn4(H4L1)(OAc)4}{Zn(OAc)3(H2O)}(OAc)] · 7H2O (1 · 7H2O), being H6L1 a macrocyclic diphenolate Schiff base ligand. Changing some operation conditions, other template reactions yielded dinuclear complexes of the type Zn2(Ln)(OAc) · xH2O, where H3Ln (n = 2, 3) are podant triphenolate Schiff base ligands derived from a 3:1 condensation of the corresponding 2,6-diformyl-4-alkyl-phenol (alkyl = Me or But, respectively) and triethylenetetramine. After recrystallisation, these two latter complexes could be X-ray characterised as Zn2(L2)(OAc) · 1.25H2O · 0.5MeCN (2 · 1.25H2O · 0.5MeCN), and Zn2(L3)(OAc) (3). Furthermore, after addition of a 3:1 molar ratio of 2-amino-4-methyl-phenol to 3, this underwent imidazolidine hydrolysis and a double imine condensation, yielding Zn2(L4)(OAc)(HOAc) · 2H2O (4 · 2H2O), where H3L4 is an acyclic pentadentate Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-tert-butyl-phenol and 2-amino-4-methyl-phenol.  相似文献   

12.
Five novel ZnII-(pyridyl)imidazole derivative coordination polymers, [Zn(L)2] (1), [Zn23-OH)L(m-BDC)] (2), [Zn23-OH)L(p-BDC)]·H2O (3), [Zn2L(BTC)(H2O)]·2.5H2O (4) and [Zn3.53-OH)L2(BTEC)(H2O)]·H2O (5) (L=4-((2-(pyridine-2-yl)-1H-imidazol-1-yl)methyl)benzoic acid, p-H2BDC=1,4-benzenedicarboxylic acid, m-H2BDC=1,3-benzenedicarboxylic acid, H3BTC=1,3,5-benzenetricarboxylic acid, H4BTEC=1,2,4,5-benzenetetracarboxylic acid), were successfully synthesized under hydrothermal conditions through varying auxiliary aromatic-acid ligands and structurally characterized by X-ray crystallography. Compound 1 exhibits a 1D chain linked via double L bridges. Compound 2 features a well-known pcu topology with bent dicarboxylate ligand (m-H2BDC) as an auxiliary ligand, while 3 displays a bcu network with linear dicarboxylate ligand (p-H2BDC) as an auxiliary ligand. The structure of compound 4 is a novel 3D (3,5)-connected network with (4·62)(4·64·82·10·122) topology. It is interesting that compound 5 shows an intricate (3,4,8)-connected framework with (4·62)(42·63·8)(42·64)(42·618·7·86·10) topology. In addition, their infrared spectra (IR), X-ray powder diffraction (XPRD) and photoluminescent properties were also investigated in detail.  相似文献   

13.
Three rhenium(IV) mononuclear compounds of formulae [ReCl4(biimH2)] · 2DMF (1), [ReCl4(pyim)] · DMF (2) and [ReCl4(bipy)] (3) (biimH2 = 2,2′-biimidazole, pyim = 2-(2′-pyridyl)imidazole, bipy = 2,2′-bipyridine and DMF = N,N-dimethylformamide) have been prepared and characterized. The crystal structure of 2 was determined by single crystal X-ray diffraction. Compound 2 crystallizes in the monoclinic system with P21/c as space group. The rhenium atom is six-coordinated by four Cl atoms and two nitrogen atoms from a bidentate pyim ligand [average values of Re–Cl and Re–N bonds lengths being 2.330(2) and 2.117(4) Å, respectively]. The magnetic properties were investigated from susceptibility measurements performed on polycrystalline samples of 13 in the temperature range 1.9–300 K. The magnetic behaviour found is typical of antiferromagnetically coupled systems, and they exhibit susceptibility maxima at 2.8 (1 and 2) and 5.6 K (3). Short ReIV–Cl?Cl–ReIV contacts through space account for the antiferromagnetic behaviour observed.  相似文献   

14.
Nickel(II) complexes of quinoline-2-carbaldehyde N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL1) and 2-benzoylpyridine N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL2) have been synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, magnetic measurements, electronic and infrared spectral studies. Three complexes were given the formulae [Ni(HL1)2]Cl2 (1), [Ni(HL2)L2]ClO4 · 7H2O (2) and [NiL2Cl] · 0.5H2O (3). The structure of compound 1 has been solved by single crystal X-ray crystallography and is found to be distorted octahedral. Compound 2, when crystallized in DMSO solution, got deprotonated to form a new compound [Ni(L2)2] (2a), with a distorted octahedral Ni(II) center. In compound 1, HL1 coordinates to the metal in the thione form, while in compounds 2a and 3, HL2 coordinates in its deprotonated thiolate form.  相似文献   

15.
An investigation of the MII/X/L [MII = Co, Ni, Cu, Zn; X = Cl, Br, I, NCS, NO3, N3, CH3COO; L = 1-methyl-4,5-diphenylimidazole] general reaction system towards the detailed study of the intermolecular interactions utilized for controlling the supramolecular organization and the structural consequences on the structures produced has been initiated. Three representative complexes with the formulae [Co(NO3)2(L)2] (1), [Zn(NO3)2(L)2] (2) and [Co(NCS)2(L)2]·EtOH (3·EtOH) have been synthesized and characterized by spectroscopic methods and single-crystal X-ray analysis. Compounds 1 and 2 are isomorphous (tetragonal, I41cd) with their metal ions in a severely distorted octahedral Co/ZnN2O4 environment, while 3·EtOH crystallizes in P21/c with a tetrahedral CoN4 coordination. The structural analysis of 1, 2 and 3·EtOH reveals a common mode of packing among neighbouring ligands (expressed through intramolecular ππ interactions between the 4,5-diphenylimidazole moieties), enhancing thus the rigidity and stability of the complexes. The bent coordination of the two isothiocyanates in 3 [Co–NCS angles of 173.8(2) and 160.8(2)°] seems to be caused by intermolecular hydrogen bonding and crystal packing effects.  相似文献   

16.
Reaction of aqueous solutions of Ni(NO3)2 and pyridoxal semicarbazone (PLSC) in the presence of NaN3 afforded two complexes, viz. green, paramagnetic binuclear octahedral [Ni2(PLSC)21,1-N3)2(N3)2] · 2H2O (1) and, as admixture, red, octahedral [Ni(PLSC–H)2] · 2H2O (2) complex. Under the same reaction conditions, pyridoxal thiosemicarbazone (PLTSC) gave only one diamagnetic square-planar, red complex [Ni(PLTSC–H)N3] · H2O (3). In the absence of NaN3, the reaction of PLTSC and Ni(NO3)2 yielded brown paramagnetic octahedral complex [Ni(PLTSC)2](NO3)2 · H2O (4).  相似文献   

17.
Synthesis, thermal behaviour and crystal structures of [Et3NH]4[V10O26(OH)2] (1) and [Me2HN(CH2)2NHMe2]3[V10O28] · 4H2O (2) are reported. In the crystal lattice of 1, the anions form discrete dimers via O–H···O hydrogen bonds and the cations are connected to the respective anions through N–H···O hydrogen bonds. On the other hand, 2 forms a complex three-dimensional network due to involvement of the cations, the anions and the lattice water in O–H···O and N–H···O hydrogen bonds.  相似文献   

18.
The reaction of sodium dimethyl(phenylsulfonyl)amidophosphate NaL (HL = C6H5SO2NHP(O)(OCH3)2) with Cu(NO3)2 · 6H2O and o-bpe (1,2-bis(pyridine-2-yl)ethane) in appropriate ratios, afford the formation of 1D coordination polymer [Cu(L)2 · o-bpe]n in good yield. The crystal structures of HL (1) and [Cu(L)2 · o-bpe]n (2) are reported. In the crystal package the molecules of 1 are linked by intermolecular hydrogen bonds formed by the phosphoryl oxygen atoms which serve as acceptors and nitrogen atoms of amide groups as donors. The crystal structure of 2 indicates the presence of unsaturated Cu(L)2 unit bridged by o-bpe ligand in the one-dimensional polymeric chain. The Cu(II) atoms have distorted 4 + 2 octahedral CuO4N2 environment formed by the oxygen atoms belonging to the sulfonyl and phosphoryl groups of two deprotonated chelate ligands and nitrogen atoms of the bridging o-bpe ligands.  相似文献   

19.
The reaction between uranyl nitrate hexahydrate and phenolic ligand precursor [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-4-amino-1-butanol) · HCl], H3L1 · HCl, leads to a uranyl complex [UO2(H2L1)2] (1a) and [UO2(H2L1)2] · 2CH3CN (1b). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-4-amino-1-butanol)H3L2 · HCl], H3L2 · HCl, yields a uranyl complex with a formula [UO2(H2L2)2] · CH3CN (2). The ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-5-amino-1-pentanol) · HCl], H3L3 · HCl, produces a uranyl complex with a formula [UO2(H2L3)2] · 2CH3CN (3) and the ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-5-amino-1-pentanol) · HCl], H3L4 · HCl, leads to a uranyl complex with a formula [UO2(H2L4)2] · 2CH3CN (4). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol) · HCl], H3L5 · HCl, leads to a uranyl complex with a formula [UO2(H2L5)2] · 4toluene (5). The complexes 15 are obtained using a molar ratio of 1:2 (U to L) in the presence of a base (triethylamine). The molecular structures of 1a, 1b, 3, 4 and 5 were verified by X-ray crystallography. All complexes are neutral zwitterions and have similar centrosymmetric, mononuclear, distorted octahedral uranyl structures with the four coordinating phenoxo ligands in an equatorial plane. In uranyl ion extraction studies from water to dichloromethane with ligands H3L1 · HCl–H3L5 · HCl, ligands H3L1 · HCl, H3L4 · HCl and H3L5 · HCl are the most effective ones.  相似文献   

20.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号