首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [CuII(L1)Cl]ClO4 (1), [CuII(L2)Cl]ClO4 (2) and [CuII2(L3)2Cl2](ClO4)2 (3) were synthesized and isolated in pure form [where L1 = 1,2-bis(2-pyridylmethylthio)ethane, L2 = 1,3-bis(2-pyridylmethylthio)propane and L3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [CuI2(L3)2](ClO4)2,0.5H2O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes 1 and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral.  相似文献   

2.
Novel copper(II) complexes, molecular [Cu66-Cl)(μ3-OH)2(μ-L)6Cl9(H2O)3] · 3H2O (1) and polymeric [Cu(μ-L)(μ-OH)(H2O)2]Cl (2) (L = 4-(4-hydroxyphenyl)-1,2,4-triazole), have been prepared and characterized by X-ray structural analysis. Compound 1 appears to be an unusual example of a chloride ion with six equal Cu–Cl distances of 2.8397(3) Å. It has also been characterized by X-ray powder diffraction and magnetic measurements. Both complexes have distorted octahedral configurations of copper ions; the coordination cores are CuN2Cl2O2 or CuN2Cl3O (1) and CuN2O4 (2).  相似文献   

3.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

4.
Reactions of 1,4-dibromo-2,5-difluorobenzene with two equivalents of lithium diisopropylamide at low temperature (T < −90 °C) followed by a quench with a slight excess of ClPPh2 afford 1,4-dibromo-2,5-bis(diphenylphosphino)-3,6-difluorobenzene (1) in good yields. Reacting 1 with two equivalents of BuLi followed by a quench with a slight excess of ClPR2 yield novel 1,2,4,5-tetrakis(phosphino)-3,6-difluorobenzenes 1,4-(PPh2)2-2,5-(PR2)2-C6F2 (R = Ph (2a); R = iPr (2b); R = Et (2c)) in moderate yields. Compounds 1 and 2a-c were characterized by multinuclear NMR spectroscopy and elemental analyses. In addition, molecular structures of 2a-c have been determined by single crystal X-ray crystallography. Phosphorus atoms of PPh2/PR2 substituents in 2a-c are displaced from the plane of the central phenyl ring due to steric interactions with neighboring groups.  相似文献   

5.
A novel versatile tridentate 3-(aminomethyl)naphthoquinone proligand, 3-[N-(2-pyridylmethyl)aminobenzyl]-2-hydroxy-1,4-naphthoquinone (HL), was obtained from the Mannich reaction of 2-hydroxy-1,4-naphthoquinone (Lawsone) with 2-aminomethylpyridine (amp) and benzaldehyde. The reactions of HL with CuCl2·2H2O yielded two novel dinuclear copper(II) complexes, [Cu(L)(H2O)(μ-Cl)Cu(L)Cl] (1b), [CuCl(L)(μ-Cl)Cu(amp)Cl] (2) and a polymeric compound, [Cu(L)Cl)]n (1a), whose relative yields were sensitive to temperature, reagents concentration and presence of base. The crystalline structures of 1b and 2 were determined by X-ray diffraction studies. The two copper atoms in complex 1b are connected by a single chloro bridge with a Cu?Cu separation of 4.1342(8) Å and Cu(1)–Cl(1)–Cu(2) angle of 109.31(4)°. In complex 2 the two copper atoms are held together by a chloro and a naphthalen-2-olate bridges [Cu(1)–Cl(2)–Cu(2) and Cu(1)–O(1)–Cu(2) angles being 83.31(3) and 109.70(9)°, respectively, and the Cu?Cu separation, 3.3476(9) Å]. As expected, variable-temperature magnetic susceptibility measurements of complex 1b showed weak antiferromagnetic intramolecular coupling between the copper(II) centers, with J = −5.7 cm−1, and evidenced for complex 2 strong antiferromagnetic coupling, with J ∼ −120 cm−1. Furthermore, the magnetic behaviour of compound 1a suggested an infinite 1D coordination polymeric structure in which the copper(II) centers are connected by Cl–Cu–Cl bridges. Solution data (UV–Vis spectroscopy and cyclic voltammetry) indicated structural changes of 2 and 1a in CH3CN, and evidenced conversion of polymer 1a into dimer 1b.  相似文献   

6.
Homo-hetero binuclear cationic complexes with the formulation [(η6-arene)RuCl(μ-dpp)(L)]+6-arene = benzene; L = PdCl2 (1a); PtCl2 (1b), and η6-arene = p-cymene; L = PdCl2 (2a); PtCl2 (2b)), [(η6-arene)RuCl(μ-dpp)(L)]2+6-arene = p-cymene; L = [(η6-C6H6)RuCl] (2c), and [(η6-C10H14)RuCl] (2d)) were prepared. Molecular structure of the representative homo binuclear complex [{(η6-C10H14)RuCl}(μ-dpp){(η6-C10H14)RuCl}](PF6)2 (2d) was determined crystallographically. Weak interaction studies on the complex 2d revealed stabilisation of the crystal packing by weak inter and intra molecular C-H?X (X = F, Cl, π) and π-π interactions. The C-H?F interactions lead to parallel helical chains and encapsulation of counter anion in self-assembled cavity arising from C-H?π and π-π weak interactions.  相似文献   

7.
The preparation, crystal structure and magnetic properties of a new oxalate-containing copper(II) chain of formula {[(CH3)4N]2[Cu(C2O4)2] · H2O}n (1) [(CH3)4N+ = tetramethylammonium cation] are reported. The structure of 1 consists of anionic oxalate-bridged copper(II) chains, tetramethylammoniun cations and crystallization water molecules. Each copper(II) ion in 1 is surrounded by three oxalate ligands, one being bidentate and the other two exhibiting bis-bidenate coordination modes. Although all the tris-chelated copper(II) units from a given chain exhibit the same helicity, adjacent chains have opposite helicities and then an achiral structure results. Variable-temperature magnetic susceptibility measurements of 1 show the occurrence of a weak ferromagnetic interaction through the oxalate bridge [J = +1.14(1) cm−1, the Hamiltonian being defined as H = –JnmSi · Sj]. This value is analyzed and discussed in the light of available magneto-structural data for oxalate-bridged copper(II) complexes with the same out-of-plane exchange pathway.  相似文献   

8.
The use as coligands of the nicotinamide (nia) and isonicotinamide (inia) molecules in the complex formation between copper(II) and phenylmalonate [Phmal = dianion of phenylmalonic acid] yielded the compounds of formula [Cu(inia)(Phmal)(H2O)] (1) and [Cu(inia)(Phmal)(H2O)]n (2). Although single crystals of 1 of appropriate size were grown, their unresolved twinning and space group ambiguity prevented a satisfactory X-ray structure determination. The crystal structure 2 consists of corrugated layers of copper(II) ions with intralayer carboxylate-phenylmalonate bridges in the anti-syn (equatorial-apical) coordination mode. A water molecule and the isonicotinamide group are coordinated to the copper atom in trans position being located above and below each layer. The Phmal ligand adopts the bidentate/monodentate coordination mode with the bidentate coordination involving one equatorial and one apical bonds, a feature which is unprecedented for the copper(II) complexes with alkyl(aryl)substituted-malonate derivatives. Intra- and interlayer H-bonds together with intralayer π-π type interactions between the phenyl and inia aromatic groups contribute to the stabilization of the three-dimensional supramolecular structure. Magnetic susceptibility measurements of complexes 1 and 2 in the temperature range 1.9-300 K are quasi identical and they correspond to a very weak ferromagnetic interaction between the copper(II) ions [J = +0.091(2) cm−1 (1) and +0.097(2) cm−1 (2) through the spin Hamiltonian for an isotropic square grid of interacting spin doublets which is defined as H = −JΣiSi · Si+1]. The strong similarity in the magnetic properties of 1 and 2 allow us to conclude that although they are not isostructural species, their structures have to be very close.  相似文献   

9.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

10.
Cis-diaquobis{di-(2-pyridyl)-N-ethylimine}nickel(II) chloride (2) was obtained from the reaction of di-(2-pyridyl)-N-ethylimine (1) and [NiCl2dppe] [dppe = cis-1,2-bis(diphenylphosphino)ethylene] in a 2:1 ratio in hot acetonitrile. Cis-dichloro{di-(2-pyridyl)-N-ethylimine}palladium(II) (3) and cis-dichloro{di-(2-pyridyl)-N-ethylimine}platinum(II) (4) complexes were obtained from the reaction of MCl2 (M = Pd, Pt) and (1) in equimolar ratio in hot acetonitrile. Compounds 1–4 were characterized by IR spectroscopy, elemental analysis, and mass spectrometry; the complexes 3 and 4 were characterized in solution by NMR. In addition, solid state structures of compounds 14 were determined using single crystal X-ray diffraction analyses. X-ray diffraction data of the complexes 3 and 4 showed a distorted square planar local geometry at palladium and platinum atoms with the chlorine atoms in a cis-coordination; in 2 a local octahedral geometry at nickel atom was observed. Complexes 3 and 4 are arranged as dimers with a M?M distance of 3.4567(4) Å (M = Pd) and 3.4221(4) Å (M = Pt), respectively; 2 consists of units linked by intermolecular hydrogen bonding.  相似文献   

11.
Three new mononuclear complexes of copper(II), viz. [Cu(L)(N3)Cl] (1), [Cu(L′)(H2O)]ClO4 (2) and [Cu(L″)] (3) where L = N-(3-aminopropyl)-N-methylpropane-1,3-diamine, L′ = 2-(N-{3-[(3-aminopropyl)(methyl)amino]propyl}ethanimidoyl)phenolate ion and L″ = 2,2′-{(methylimino)bis[propane-3,1-diylnitrilo(1E)eth-1-yl-1-ylidene]}diphenolate ion, have been prepared. The synthesis of complex 1 has been achieved by reacting copper chloride with the triamine (L) and sodium azide in a 1:1:1 M ratio. The other two compounds have been synthesized by the reaction of copper perchlorate with the same triamine, L, plus 2-hydroxyacetophenone in a molar ratio of 1:1:1 (for 2) and 1:1:2 (for 3), so that the respective tetradentate and pentadentate Schiff bases HL′ and H2L″ are formed in situ to bind the copper(II) ions. The complexes have been characterized by microanalytical, spectroscopic and single crystal X-ray diffraction studies. Structural studies reveal that the mononuclear units of all the three complexes adopt a distorted square pyramidal geometry and are held together by either intermolecular H-bonding (in 1 and 2) or C-H?π interactions (in 3) to form supramolecular networks in the solid state.  相似文献   

12.
On reaction of different copper(II) salts with 3,4-bis(2-pyridylmethylthio)toluene (L) having neutral tetradentate NSSN donor set in different chemical environments, two mononuclear copper(II), one dinuclear copper(I) and one dinuclear copper(II) complexes, formulated as [CuII(L)(H2O)2](NO3)2 (1), [CuII(pic)2] (2), [CuI2(L)2](ClO4)2 (3) and [CuII2(L)2Cl2](ClO4)2 (4), respectively, were isolated in pure form [where pic = picolinate]. All the complexes were characterized by physicochemical and spectroscopic methods. The product of the reactions are dependent on the counter anion of copper(II) salts used as reactant and on the reaction medium. Complexes 1 and 4 were obtained with nitrate and perchlorate copper(II) salts, respectively. On the other hand, C–S bond cleavage was observed in the reaction of L with copper(II) chloride to form in situ picolinic acid and complex 2. Dinuclear complexes 3 and 4 were separated out when copper(II) perchlorate was allowed to react with L in methanol and in acetonitrile, respectively, under aerobic condition. The X-ray diffraction analysis of the dinuclear complex 3 shows a highly distorted tetrahedral geometry about each copper ion. Complex 4 is converted to 3 in acetonitrile in presence of catechol. The spectral study of complex 4 with calf thymus DNA is indicative of a groove binding mode interaction.  相似文献   

13.
The reaction between 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) in a 1:1 M/L ratio in CH2Cl2 or acetonitrile solution, respectively, gave the complexes trans-[MCl2(bddf)] (M = Pd(II) (1), Pt(II) (4)), and in a 2:1 M/L ratio led to [M2Cl4(bddf)] (M = Pd(II) (2), Pt(II) (5)). Treatment of 1 and 4 with AgBF4 and NaBPh4, respectively, gave the compounds [Pd(bddf)](BF4)2 (3) and [Pt(bddf)](BPh4)2 (6). When complexes 3 and 6 were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1) for 24 h, analogous complexes to 1 and 4 with bromides instead of chlorides bonded to the metallic centre were obtained. These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 1H{195Pt}, 13C{1H}, 195Pt{1H} NMR, HSQC and NOESY spectroscopies. The X-ray crystal structure of the complex [Pd(bddf)](BF4)2 · H2O has been determined. The metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether groups.  相似文献   

14.
Reaction of copper(I) chloride with 1,3-imidazoline-2-thione (imzSH) in the presence of Ph3P in 1:2:2 or 1:1:2 (M:L:PPh3) molar ratios yielded a compound of unusual composition, [Cu2(imzSH)(PPh3)4Cl2] · CH3OH (1), whose X-ray crystallography has shown that its crystals consist of four coordinated [CuCl(1κS-imzSH)(PPh3)2] (1a), and three coordinated [Cu(PPh3)2Cl] (1b) independent molecules in the same unit cell. In contrast, crystals of complexes of copper(I) bromide/iodide are formed by single molecules of [CuBr(1κS-imzSH)(PPh3)2] · H2O (2) and [CuI(1κS-imzSH)(PPh3)2] (3), respectively, similar to molecule 1a. The related ligand, 1,3-benzimidazoline-2-thione (bzimSH) formed a complex [CuBr(1κS-bzimSH)(PPh3)2] · CH3COCH3 (4), similar to 2. The formation of 1a and 1b has been also revealed by NMR spectroscopy. The NMR spectra of 24 also showed weak signals indicating formation of compounds similar to 1b. It reveals that the lability of the Cu–S bond varies in the order: Cl ? Br ∼ I. Weak interactions {e.g. C–H?π electrons of ring, –NH?halogens/oxygen, C–H?halogens/oxygen, π?π (between rings)} have played an important role in building 2D chains of complexes 14.  相似文献   

15.
16.
Ternary Cu(II) complexes [Cu(II)(saltyr)(B)] (1,2), (saltyr = salicylidene tyrosine, B = 1,10 phenanthroline (1) or 2,2′ bipyridine (2)) were synthesized and characterized by various techniques. The complexes exhibit square pyramidal (CuN3O2) geometry. CT-DNA binding studies revealed that the complexes show good binding propensity (Kb = 3.47 × 104 M−1 and 3.01 × 104 M−1 for 1 and 2, respectively). The role of these complexes in the oxidative and hydrolytic DNA cleavage was studied. The catalytic ability of 1 and 2 follows the order: 1 > 2. The rate constants for the hydrolysis of phosphodiester bond were determined as 2.80 h−1 and 2.11 h−1 for 1 and 2, respectively. It amounts to (0.58-0.77) × 108 fold rate enhancement compared to non-catalyzed DNA cleavage, which is significant.  相似文献   

17.
18.
The bivalent zinc and cadmium complexes of two Schiff bases N-(2-pyridylmethyl)pyridine-2-carbaldimine (L1), N-(2-pyridylmethyl)pyridine-2-methylketimine (L2), tridentate ligands with an N3 chromophore and coordinating with two five-membered chelate rings, were synthesized. Complexes [Zn(L1)(NO3)2] (1), [Zn(L2)(NO3)2] (2), [Cd(L1)(NO3)2(H2O)] (3) and [Cd(L2)(NO3)2(CH3OH)] (4) were characterized by X-ray crystallography. In 1 and 2, Zn(II) has a distorted square-pyramidal geometry where as in 3 and 4, Cd(II) possesses a pseudo-pentagonal-bipyramidal geometry. The following trends in the bond lengths are observed: M–Nim < M–Npy; Zn–N > Zn–O; Cd–N < Cd–O. The final residues from the thermogravimetric analysis are ZnO and CdO, the SEM studies revealed, respectively, their porous and spherical natures. The average activation energy (E) for the loss of pyridine rings obtained from the Friedman fitting of the DSC data, for 1, 2, 3, and 4 are 193.8(2), 114.5(3), 127.1(4), and 63.7(3) kJ mol−1 and their logarithmic pre-exponential factor (A) are 11.22, 5.31, 6.88, and 2.09, respectively.  相似文献   

19.
The syntheses of four compounds, obtained by the reaction of methylpyruvate thiosemicarbazone (Hmpt) and its methyl (Me-Hmpt) and allyl (Allyl-Hmpt) derivatives with bis(triphenylphosphine)copper(I) acetate, are reported. The compounds [Cu(PPh3)2(ptc)(Hptc)]·H2O (1), [Cu(PPh3)2(Me-ptc)] (2), [Cu2(PPh3)2μ-S(Me-pt)μ-S(Me-ptc)]·H2O (3) and [Cu(PPh3)2(Allyl-ptc)] (4) [H2pt = pyruvic acid thiosemicarbazone and Hptc = cyclized pyruvic acid thiosemicarbazone, Me = methyl and Allyl are radical substituents on the amino nitrogen] were characterized by elemental analysis, IR, 1H NMR, and by X-ray crystallography. Compound 3 was also studied by EPR because of the presence in the compound of two copper atoms in two different oxidation states. During the complexation reaction, the thiosemicarbazone ligands tend to undergo a cyclization reaction that leads to the formation of a six-member heterocyclic ring. All four compounds present the [Cu(PPh3)2]+ fragment and constant but different coordination situations. Compound 1 contains two cyclic ligand molecules, one protonated and the other deprotonated, bound as monodentate through the sulfur. Compounds 2 and 4 present a single deprotonated cyclic SN bidentate ligand molecule, while compound 3 contains copper(I) and copper(II), and two ligand molecules, one of which is linear and behaves as SNO tridentate and the other is cyclic and behaves as bridging μSN.  相似文献   

20.
Three new copper(II) complexes [CuL1]2(ClO4)2 (1), [CuL2]ClO4 (2) and [CuL3] (3) with three Schiff base ligands [HL1 = 1-phenyl-3-{3-[(pyridin-2-ylmethylene)-amino]-propylimino}-butan-1-one, HL2 = 1-phenyl-3-[3-(1-pyridin-2-yl-ethylideneamino)-propylimino]-butan-1-one and H2L3 = 3-[3-(1-methyl-3-oxo-3-phenyl-propylideneamino)-propylimino]-1-phenyl-butan-1-one] have been synthesized and structurally characterized by X-ray crystallography. The mono-negative tetradentate asymmetric Schiff base ligands (L1) and (L2) are chelated in complexes 1 and 2 to form square planar copper(II) complexes. In complex 1, the two units are associated weakly through ketonic oxygen of benzoylacetone fragment to form the dimeric entity. The square planar geometry of complex 3 is unusually distorted towards tetrahedral one. All three complexes exhibit reversible cyclic voltammetric responses in acetonitrile solution corresponding to the CuII/CuI redox process. The E1/2 (−0.47 V versus SCE) of 3 shows significant anodic shift due to the tetrahedral distortion around Cu(II) compare to that of 1 and 2 (−0.82 and −0.87 V versus SCE, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号