首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new ligands of the coumarin type have been synthesized and characterized by 1H, 13C NMR, IR and MS. The crystal and molecular structures of ligand 2, determined by the X-ray diffraction method, are presented. With copper(II) these ligands create solid complexes of the type CuLCl2, where L is 5-(2-hydroxybenzoyl)-3-methyl-1-(2-pyridinyl)pyrazol-4-carboxylic acid methyl ester (2) or 3-methyl-1-(2-pyridinyl)-1H-chromene[4,3-c]pyrazol-4-on (3). The new copper(II) complexes have been characterized by elemental analysis and solid state FT-IR. The protonation constants of ligands 2 and 3 have been determined in 5% v/v 1,4-dioxane–water solution (25 °C). The coordination modes in the complexes with copper(II) are discussed for 2 on the basis of potentiometric and UV–Vis data.  相似文献   

2.
Four chalcone–thiosemicarbazones (C-TSCs) of the type 2-((E)-3-(4-R-phenyl)-1-phenylallylidene)-N-phenylhydrazinecarbothioamide, where R?=?Cl (HL1), NO2 (HL2), CH3 (HL3) or CN (HL4), were prepared in good yields from the reaction of the respective chalcone with 4-phenyl-3-thiosemicarbazide and HCl in EtOH. Reaction of HL with CuCl2·2H2O or ZnCl2 in the presence of Et3N afforded the complexes [M(L)2], M?=?Cu(II) or Zn(II). X-ray diffraction analysis revealed that the ligands coordinate in their deprotonated form, in a bidentate fashion through the iminic nitrogen and sulfur atoms. Yeast activities of the compounds were tested, where the ligand HL4 was the most damaging derivative, exhibiting cell viability at about 50%. On the other hand, lipid peroxidation assays revealed that the ligand HL1 was able to better induce membrane damage compared to the other compounds. It has been found that coordination with Cu(II) and Zn(II) did not increase the biological activities of the C-TSCs.  相似文献   

3.
4.
Transition Metal Chemistry - Two copper(II) complexes with ligands derived from β-amino acids, 2-(1-aminocyclohexyl)acetic acid L1 and 2-(1-amino-4-(tert-butyl)cyclohexyl)acetic acid L2, were...  相似文献   

5.
Treatment of the unsymmetrical β-iminoamine ligands [PhCN(Ar)CHCNH(Ar)Me] with the zerovalent complex Pd(dba)2 in the presence of the methallyloxyphosphonium salt, gives high yields of the cationic β-diimine complexes [PhCN(Ar)CH2CN(Ar)(Me)Pd(η3-C4H7)]+[PF6] (Ar = 2-Me-C6H4 (7); 2-MeO-C6H4 (8); 2,6-Me2-C6H3 (9); 2,6-iPr2-C6H3 (10)). All the new complexes have been characterised by NMR and IR spectroscopy. The structure of the cationic methallyl palladium complex (10) has been solved by X-ray crystallography.  相似文献   

6.
New complexes of general empirical formula, [M(NS)2] · nCHCl3 (M = NiII, CuII, PdII or PtII; NS = anionic form of the thiophene-2-aldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate; n = 0, 1) have been synthesized and characterized by physico-chemical techniques. Magnetic and spectroscopic evidence support a square-planar structure for these complexes. The crystal structures of the [Ni(tasbz)2] and [Cu(tasbz)2] · CHCl3 complexes (tasbz = anionic form of the thiophene-2-aldehyde Schiff base of S-benzyldithiocarbazate) have been determined by X-ray diffraction. Both complexes have a trans-planar structure in which the two Schiff base ligands are coordinated to the metal(II) ion as uninegatively charged bidentate ligands via the thiolate sulfur and the azomethine nitrogen atoms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Two α-diimine ligands were prepared in 60–70% yield via p-toluenesulfonic acid-catalyzed condensation reactions from benzil with 4-bromoaniline and with p-anisidine. Palladium(II) complexes were prepared from both ligands in 70–80% yield. X-ray structures were obtained for the ligand prepared from p-anisidine and its palladium(II) complex. A notable feature observed in the former was its unconjugated C–N double bonds, both in the (E)-configuration. The latter structure possessed two molecules of the metal complex in its unit cell, both of which have diimine cores with a degree of conjugation and a nonideal square-planar geometry around palladium caused by the small bite angles (79.61(3) and 79.15(3)°) of the diimine ligands. Solution-phase electronic absorption spectra of the ligands in chloroform have two bands from ππ ? and nπ ? transitions at 269–345?nm. Absorption spectra of the complexes in chloroform exhibited bands attributed to ligand-centered transitions that were red-shifted as compared to free ligands. Only the spectrum obtained from a chloroform solution of the palladium(II) complex with the diimine ligand prepared from p-anisidine featured a band at approximately 520?nm, which was assigned to a combination of d π(Pd)→π ? and n(Cl)→π ? transitions.  相似文献   

8.
The possibility of ?-caprolactam (CPL) to coordinate to manganese(II), cobalt(II), and nickel(II) rhodanides has been investigated. New complexes trans-[M(CPL)4(NCS)2], where M = Mn (I), Co (II), and Ni (III), have been synthesized. The complexes have been studied by chemical analysis and IR spectroscopy. According to X-ray diffraction, complexes are isostructural to each other and crystallize in monoclinic space group P21/c, Z = 2. For I: a = 6.9457(2) ?, b = 17.7751(6) 0A, c = 12.8999(4) 0A, ?? = 104.2670(10)°, V = 1543.51(8) ?3, ??calc = 1.342 g/cm3, R 1 = 0.0426. For II: a = 6.8925(2) ?, b = 17.8189(8) ?, c = 12.7278(6) ?, ?? = 104.421(2)°, V = 1513.93(11) ?3, ??calc = 1.377 g/cm3, R 1 = 0.0280. For III: a = 6.7804(2) ?, b = 18.4631(4) ?, c = 12.4841(3) ?, ?? = 105.2950(10)°, V = 1507.49(7) ?3, ??calc = 1.382 g/cm3, R 1 = 0.0273. Structures I?CIII are molecular; the metal atom in each of them coordinates four CPL molecules and two NCS groups via oxygen and nitrogen atoms, respectively.  相似文献   

9.
New mixed-ligand complexes, [M2(BAMP)(bipy)2][MCl4]2, M=Co+2(1), Cu+2(2), [M2(TAMEN)(bipy)2][MCl4]2, M=Fe+2(3), Co2+(4), and [Fe2(TAMEN)(bipy)2][FeCl6]2 (5), where BAMP and TAMEN stand for the Mannich bases N,N′-bis(antipyryl-4-methylene)-piperazine and N,N′-tetra(antipyryl-4-methylene)-1,2-ethane-diamine, respectively, have been obtained and characterized by elemental analyses, conductometric and magnetic susceptibility measurements at room temperature, mass spectrometry, UV-Vis, infrared, and mass spectroscopy, and 1H NMR spectra for the ligands.  相似文献   

10.
The syntheses, crystal structures and spectroscopic properties of three Cu(II)–dipicolinate complexes with benzimidazole ligands, namely [Cu(bzim)(dipic)(MeOH)] (1), [Cu2(2-Etbzim)2(dipic)2]n·0.5nH2O (2) and [Cu2(2-iPrbzim)2(dipic)2]n (3), where dipic?=?dipicolinate, bzim?=?1-H-benzimidazole, 2-Etbzim?=?2-ethyl-1-H-benzimidazole and 2-iPrbzim?=?2-isopropyl-1-H-benzimidazole, are reported. Crystal structure studies revealed different coordination modes of the dipicolinate ligands; tridentate chelating for monomeric complex 1, and both tridentate chelating and bridging for similar polymeric complexes 2 and 3. Polymers 2 and 3 both contain two units, in which the Cu(II) central atoms Cu1 and Cu2 have different coordination polyhedra. The first unit {Cu(dipic)2} with Cu1 is connected to the second via two bidentate carboxylate groups of an μ3-bridging dipicolinate. In the second unit, Cu2 is coordinated by two imidazole nitrogen atoms from 2-ethyl-1-H-benzimidazole (2) or 2-isopropyl-1-H-benzimidazole (3) ligands. Complex 2 is of higher symmetry and has a localized Cu(II) atom Cu2 in a special position on the twofold axis. EPR spectra of all three Cu(II) complexes, which were measured at both room temperature and 98 K, indicate distorted tetragonal coordination spheres for all the Cu(II) atoms. The g-factor relation (g//>?g?>?2.0023) is consistent with a \(d_{{x^{2} - y^{2} }}\) ground electronic state in each case.  相似文献   

11.
Eight pairs of cis–trans isomeric homoleptic platinum(II) complexes based on N-alkyl- or aryl-substituted 2,2′-biimidazole ligands were synthesized, and their photophysical properties were investigated. The cis and trans isomers readily interconvert at slightly elevated temperature, implying that the activation barrier for this process is low. Single crystal X-ray diffraction analysis revealed that the complexes have an ideal square-planar geometry. Their UV–Vis spectra showed lower energy absorption bands in the range of 345–378 nm, which are assigned to the typical MLCT mixed with LC transitions. In frozen glass solution at 77 K and also in the powder state, these complexes exhibit green emission ranging from 440 to 540 nm with photoluminescence quantum yields of 3.3–24.4%. The emitting excited state is dominated by 3ππ* character with some contributions from 3MLCT according to the excitation spectra.  相似文献   

12.
Research on Chemical Intermediates - Palladium (II) complex with 4-tert-butylbenzoic hydrazide (TBBH)/triphenylphosphine (PPh3) ligands was successfully synthesized and characterized by X-ray,...  相似文献   

13.
《Polyhedron》1999,18(8-9):1235-1245
Two new μ-oxalato binuclear copper(II) complexes, [{Cu(NO3)(H2O)(bipy)}2(ox)] (1) and [{Cu(dien)}2(ox)](NO3)2 (2), with ox=oxalate, dien=diethylenetriamine and bipy=2,2′-bipyridine, have been synthesized and their crystal and molecular structures have been determined by single-crystal X-ray diffraction methods. The crystal structure of 1 consists of centrosymmetric neutral dimers where the copper atoms lie in a strongly elongated octahedral environment, surrounded by two nitrogen atoms of a bipy molecule and two oxygen atoms of the bridging oxalato group in the equatorial plane and oxygen atoms of water molecules and nitrate ions in the axial positions. Crystal structure of 2 is made up of non-coordinated nitrate anions and asymmetric binuclear cations in which copper atoms are in a distorted square–pyramidal coordination with three atoms of a diethylenetriamine ligand and an oxygen atom of the asymmetrically coordinated oxalato bridge building the basal plane and the other oxygen atom of the oxalato ligand filling the apical position. Both compounds have been also characterized by Fourier transform infrared (FT-IR) and electron spin resonance (ESR) spectroscopies, thermal analysis and variable temperature magnetic susceptibility measurements. The two compounds exhibit antiferromagnetic exchange with a singlet–triplet separation of −382 and −6.5 cm−1 for 1 and 2, respectively. Magnetic and ESR results are discussed with respect to the crystal structure of the compounds.  相似文献   

14.
15.
Palladium(II)chloride affords simple coordination compounds withC5H5N+N-COMe and C5H5N+N-COEt but the derivative of N-(1-pyridinio)proprionamidate decomposes with evolution of HCl at the melting point.Both C5H5N+N-SO2Ph (L) and C5H5N+N-COPh (L′) give coordination compounds with cobalt(II) and copper(II). The series [ML4] (CLO4)2 (M = Co, Cu, Zn) is isomorphous and evidence is available from spectroscopic measurements (UV and ESR) to support the tetrahedral environment about the metal ions, although in the copper compound some distortion is present. [Co2L4X2]X2 (X = Cl, Br) and [Cu2L4Cl2]Cl2 are isomorphous, dimeric and have pseudo tetrahedral stereochemistry; [CuL2Br2] and [ZnL2Cl2 are isomorphous and tetrahedral. The spectroscopic data are discussed in such depth as the data derived from polycrystalline specimens permit. [CoL4′] (ClO4)2 contains O-bonded C5H5N+N-COPh and exists in at least two polymorphic forms one of which is magnetically abnormal [Co2-L4′Cl2]Cl2 is dimeric and contains both O- and N-bonded ylide, [Co2L2X4] are also dimers but contain only the O-bonded ylide. [CuL3·5′] (ClO4)2, which contains copper(II) in a distorted 6-coordinate environment, is contrasted with the well defined [CuL4] (ClO4)2 (above). N-(1-pyridinio)benzamidate undergoes NN bond rupture to give pyridine and phenylisocyanate at 190–200°C, but this decomposition temperature may be lowered by approx. 100°C in the presence of anhydrous copper(II) chloride which is shown to give an N-bonded complex with the ylide.  相似文献   

16.
Summary The reactions of manganese(II), cobalt(II) and nickel(II) acetates (1 mole) with antipyrine-4-azo--ethylcyanoacetate (HL1) and antipyrine-4-azo--acetylacetone (HL2) (1 mole) produce complexes of the M(L)2 type. K2PdCl4 (1 mole) reacts with HL1 and HL2 (1 mole) to yield complexes of the general formula PdLCl, the ligands behaving as monobasic tridentates. The electronic spectral and magnetic data show the complexes to be high-spin octahedral, whereas the palladium(II) complexes are diamagnetic square planar. The complexes were characterized by elemental analyses, conductance measurements and i.r. and electronic spectra as well as magnetic susceptibility measurements and thermal (t.g.a. and d.t.a.) analysis.Nuclear Material Authority.  相似文献   

17.
Two Re(IV)–Cu(II) heterometallic complexes {(CuLα)[ReCl4(ox)]}n (where Lα = N-meso-5,12-Me2-7,14-Et2-[14]-4,11-dieneN4), 1, and (CuLβ)[ReCl4(ox)] (Lβ = N-rac-5,12-Me2-7,14-Et2-[14]-4,11-dieneN4N-rac-5,12-Me2-7,14-Et2-[14]-4,11-dieneN4), 2, were synthesized. The [CuL2+] macrocyclic cation is coordinated from above and below by [ReCl4(ox)]2− units through the chloro-ligands and creates a chloro-bridged heterometallic ReIV–CuII one-dimensional zig-zag chain. Compound 2 can be viewed as a heterobimetallic dinuclear unit, in which the Re(IV)-Cu(II) centers are linked by an oxalato bridge. The magnetic behavior of 1 and 2 has been investigated over the temperature range 1.8–300 K. Compound 1 behaves like a ferrimagnetic {Re(IV)–Cu(II)} bimetallic, one-dimensional chain with intrachain antiferromagnetic coupling. Compound 2 shows a weak antiferromagnetic interaction within the [Re(IV)–Cu(II)] unit along with a strong single-ion anisotropy, D(Re) = −63 cm−1.  相似文献   

18.
The work presents results of the studies on the synthesis of Co–Pd alloys from acid electrolytes containing chloride ions. The main aim of the tests was to identify reactions responsible for alloy formation and to determine an influence of the electrolysis parameters, i.e. working electrode potential, electrolyte composition and temperature on the composition of the resulted alloy coatings. Electrochemical investigations were performed by applying cyclic voltammetry (CV) combined with electrochemical quartz crystal microbalance (EQCM). The electrolyte composition was selected based on a thermodynamic analysis and spectrophotometric tests which were described in our previous papers [1, 2]. They allowed determination of equilibrium distribution of the metals complex forms and a stability analysis of the electrolyte. The alloys were synthesized within the potential range from ?0.7 to ?1.1 V. The tests indicate a possibility of alloys synthesis already at the potential range 相似文献   

19.
A bidentate and a quadridentate Schiff base having NS and NNSS donor sequences were prepared by condensing S-benzyldithiocarbazate (NH2NHCSSCH2Ph) with 2,3-butanedione (1:1 and 1:2 mole ratio). NiII and CuII complexes of these ligands were studied and characterised by elemental analyses and various physico-chemical techniques. The nickel complexes, [Ni(NS)2] and [Ni(SNNS)], were diamagnetic with square-planar and five-coordinate structures, respectively. The copper complex was, however, pentacoordinated. The ligands and the complexes were screened for anticancer activity against T-lymphoblastic leukemic cells (CEM-SS) and colon cancer cells (HT-29). The NS Schiff base was strongly active against leukemic cells with a CD50 value of 2.05 g cm–3. The nickel and copper complexes were found to be stronger antioxidants than Vitamin E.  相似文献   

20.
Summary Complexes of the type M(HXCA)2·nH2O (M = CuII, NiII or CoII; HXCA = 2-hydroxy--4-X-cinnamoyl acetophenone; X = H, Cl, Me or OMe; n = 0 or 2) have been synthesized, and characterized by elemental analysis, i.r., electronic, 1H-n.m.r. and e.s.r. spectroscopies, and magnetic susceptibility measurements. The spectral data indicate that the ligand coordinates through both carbonyl and enolic oxygens. The anhydrous CuII complexes are monomeric and square planar, while the NiII and CoII analogues possess polymeric high-spin octahedral structures. The diaquates and dipyridinates of CoII and NiII have monomeric high-spin octahedral geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号