首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用毛细管区带电泳分析了受稻瘟病菌侵染的水稻幼苗的叶片细胞蛋白提取物和胞间流液蛋白提取物,用线性聚丙烯酰胺涂渍的毛细管柱来抑制蛋白的吸附。采用数理统计中检验异常值的Grubbs方法分析结果,与对照实验相比,在叶片细胞蛋白提取物中发现了一种被稻瘟病菌诱导表达的蛋白。  相似文献   

2.
毛细管电泳在农药残留检测上的应用   总被引:15,自引:0,他引:15  
对近20年来毛细管电泳分析方法在农药残留分析中的应用进行了论述.按照农药的用途分类,分别评述了应用毛细管电泳分析检测杀虫剂和杀菌剂以及除草剂残留的研究进展,并对毛细管电泳在农药残留分析中的应用进行了展望.  相似文献   

3.
傅若农 《色谱》1992,10(1):41-42
从80年代初交联毛细管柱和大内径厚液膜毛细管柱的问世,显示了毛细管色谱法的突出优点,从而以毛细管柱逐步取代填充柱成为必然趋势。气相色谱法从1959年开始用于火炸药分析,从80年代初起把毛细管气相色谱用于火炸药污染物的分析以来,气相色谱法已成为火炸药分析十分有用的工具。根据我们多年的研究认为毛细管气相色谱法在很多情况下优于填充柱气相色谱法。  相似文献   

4.
本文从细胞悬浮液制备、单个细胞进样技术、细胞溶解技术、分离模式、检测方法和应用新进展6个方面对单细胞毛细管电泳分析进行了全面评述.重点介绍了单个细胞进样技术及检测方法的最新进展,并对单细胞毛细管电泳分析的未来发展方向进行了展望.  相似文献   

5.
毛细管气相色谱用固定液的进展   总被引:4,自引:2,他引:2  
傅若农 《色谱》1990,8(1):16-20
一、前言 自从1979年弹性石英毛细管柱问世之后.毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显.特别是1983年大内径厚液膜毛细管柱的发展和应用使这种趋势更加肯定了。当然目前在国内填充柱气相色谱仍在例行分析中占主导地位,但是随着毛细管色谱技术在国内的进一步发展,填充柱会逐步地被毛细管柱所取代。  相似文献   

6.
介绍了几种方法在微生物分离和检测方面的早期探索与存在的问题,着重论述了毛细管电泳方法分离表征细菌和病毒的研究进展以及毛细管电泳分析微生物的有关机理研究。  相似文献   

7.
毛细管电泳是在电场作用下带电粒子在毛细管内的定向移动。溶质在给定时间间隔和给定电场下移动的距离用淌度表示,而淌度受到缓冲液pH的影响显著,因此,确定缓冲液、选择并控制其pH值是毛细管电泳技术的关键。本文对pH值对淌度的影响进行了研究。 1 实验部分 所有实验在HPE-100毛细管电泳仪(Bio-Rad USA)上进行,紫外检测,电动进样。所用毛细管柱中S柱由Bio-Rad提供,H_5、H_6和E均为本实验室自行制备,研制过程和性能考察  相似文献   

8.
毛细管电色谱中整体式高聚物毛细管柱技术的进展   总被引:7,自引:0,他引:7  
对近期毛细管电色谱(CEC)中利用高分子聚合反应制备整体式(monolithic)毛细管柱的技术,特别对各种不同类型的整体式毛细管的制备方法进行了详细介绍;对该类毛细管用于不同样品的分离情况进行了总结。  相似文献   

9.
无机阴离子的毛细管电泳分析   总被引:9,自引:2,他引:9  
傅小芸  吕建德 《分析化学》1994,22(10):1019-1021
本文研究了常见无机阴离子的毛细管电泳规律,考察了分离电压、电解质熔液组成、浓度、pH值等对分离的影响,建立了高效、快速的无机阴离子毛细管电泳分析方法。在选定的实验条件下,各种常见无机阴离子在5min内达到完全分离,对Br^-和Cl^-的分离柱效每米可达76万理论板数。迁移时间的相对标准偏差小于1%,峰面积的相对标准偏差小于5%,各离子的最低检测浓度为0.05 ̄0.5μg/ml。  相似文献   

10.
提出了一种基于芯片-毛细管复合装置的紫外检测-微流控芯片毛细管电泳分析系统.采用小死体积的耦合技术实现了石英毛细管与“十”字通道型微流控玻璃芯片的耦合.本系统的紫外检测灵敏度与商品化毛细管电泳仪相当.采用夹流进样方式,达到较高的进样重现性,2mmol/L苯甲酸的峰高相对标准偏差(RSD)为1.5%(n=11).可用于复方磺胺甲唑片剂的两种有效成分的快速分离.  相似文献   

11.
The paper describes how borate-containing BGEs modify ζ-potential and so EOF in bare fused silica capillaries. This surface modification can be used to suppress EOF and improve the separation performance of CZE including capillary sieving electrophoresis (CSE). Boric acid forms complexes with polysaccharides used as sieving matrices in CSE and other compounds containing hydroxyl groups, including polyol bases such as Tris, triethanolamine, and Bis-Tris propane. High concentration of boric acid in BGEs leads to a strong interaction of boric acid with the silica surface of the capillary wall and this suppresses or even completely eliminates ζ-potential and EOF. Using a polyol base with several charge-carrying amino groups, such as Bis-Tris propane, can actually reverse EOF. We demonstrate the use of various borate-containing BGEs in bare fused silica capillaries for size-separation of DNA fragments, size-separation of proteins by SDS CSE, and also by CZE in the absence of any sieving matrix.  相似文献   

12.
Capillary zone electrophoretic (CZE) separations and mass spectrometric analysis of salmon calcitonin and related analogues were performed to generate electrophoresis and mass fingerprints for quality control of the recombinant polypeptide pharmaceutical salmon calcitonin. The calcitonins and their corresponding tryptic digests were successfully separated by CZE at low pH in fused silica capillaries dynamically modified with poly-cationic polymers. The poly-cationic modified inner surface of the fused silica capillaries generated a strong anionic electroosmotic flow (EOF). Analytes of negative, neutral, and positive charge were all swept through the capillary toward the positive electrode. Compared to Polybrene-coated capillaries, capillaries coated with PEI showed a markedly slower but much more stable electroosmotic flow. The migration order of the analytes was predicted by comparing approximate values of the charge to (molecular mass)2/3 ratios. The predicted migration order was confirmed by off-line analysis of CZE fractions with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS).  相似文献   

13.
Xuan X  Hu G  Li D 《Electrophoresis》2006,27(16):3171-3180
An analytical model is developed to quantify the Joule heating effects on the separation efficiency in CZE with an initial voltage ramp. This model considers the temporal variations of nonuniform temperature and flow fields in the course of voltage ramping. The temperature dependence of electrical conductivity, dynamic viscosity, and mass density of the fluid is also taken into account. We demonstrate that the application of an initial voltage ramp delays the development of pressure-driven flows induced passively by the axial temperature gradients. The thermal dispersion is thus significantly reduced, resulting in a higher theoretical plate number in CZE. Such improvement in the separation efficiency is apparent in noncoated capillaries at high electric fields with an appropriate voltage ramp-up time. These predictions are consistent with previous observations in both aqueous and nonaqueous CZE that took place in uncoated capillaries. In coated capillaries where the EOF is suppressed, however, our model predicts a lower plate number in the presence of an initial voltage ramp.  相似文献   

14.
Transient capillary isotachophoresis (CITP)-capillary zone electrophoresis (CZE) in presence of electroosmotic flow (EOF) was utilized for the measurement of adenosine deaminase activity in human erythrocytes. Phosphates, dominant anions of the sample matrix, were used as leading ions for transient isotachophoresis, and borates (0.3 M, pH 10) were used as terminating ions and background electrolyte for CZE. Final experimental conditions made it possible to inject 70% of the total capillary volume (1.45 microL) with the sample. Enzymatic conversion products (inosine and hypoxanthine), present in the sample in the low-micromolar range, were determined using optimized conditions. The limit of detection was 28 nM using UV detection at 202 nm. The presented data shows that CITP-CZE can be performed in uncoated capillaries in the presence of strong EOF.  相似文献   

15.
Berli CL  Piaggio MV  Deiber JA 《Electrophoresis》2003,24(10):1587-1595
A theoretical relation between the zeta potential of silica capillaries and the composition of the background electrolyte (BGE) is presented in order to be used in capillary zone electrophoresis (CZE). This relation is derived on the basis of the Poisson-Boltzmann equation and considering the equilibrium dissociation of silanol groups at the capillary wall as the mechanism of charge generation. The resulting model involves the relevant physicochemical parameters of the BGE-capillary interface. Special attention is paid to the characterization of the BGE, which can be either salt or/and buffer solutions. The model is successfully applied to electroosmotic flow (EOF) experimental data of different aqueous solutions, covering a wide range of pH and ionic strength. Numerical predictions are also presented showing the capability of the model to quantify the EOF, the control of which is relevant to improve analyte separation performance in CZE.  相似文献   

16.
We have recently described [1] a fast and simple method for the "adsorbed static" coating of capillaries in capillary zone electrophoresis (CZE) with epoxy-poly(dimethylacrylamide) (EPDMA). Protein CZE peaks in the EPDMA-coated capillaries exhibited a peak asymmetry similar to that obtained in capillaries with "covalent static" coating of polyacrylamide, suggesting a similar degree of adsorption of the protein onto the coating [2]. Instability of such coating at very low ionic strength and its stripping from the capillary in the presence of sodium dodecyl sulfate (SDS) also indicated a hydrophilic bonding of EPDMA to the silanol surface of the capillary, while its stripping in the CZE of "carboxylate-modified" polystyrene suggested a competition between carboxylate and EPDMA for the hydrophilic bonds to silanol. To test those propositions, a number of EPDMA-derived coating agents with increased hydrophilicity were synthesized. Of a number of the hydrophilic coating agents tested (Table 1) only two, 2% hydrolyzed EPDMA (HPDMA) hydrolyzed in sulfuric acid to effect the conversion of the epoxy groups to diols (Table 1, No. 38), and 20% EPDMA (Table 1, No. 44) exhibited for representative proteins a decreased peak asymmetry and width while the stability of the suppression of electroosmotic flow (EOF), and the stability of mobility in consecutive CZE runs was reduced relative to EPDMA. Coating agents which were more highly hydrophilic than those two (Table 1, No. 49) or less hydrophilic than 2% EPDMA (Table 1, Nos. 57, 53, 46) provided no stable static coating.  相似文献   

17.
The properties and behavior of polyethyleneimine (PEI) covalently coated capillaries with respect to different background electrolytes used in capillary zone electrophoresis (CZE) are described. The coating stability and changes of inner surface charge in the capillary were followed by measurement of electroosmotic flow (EOF). Interest was focused mainly on conjugate bases of carboxylic acids as anionic background electrolyte components (acetate, citrate, malate, malonate, tartrate, and succinate). An interesting phenomenon was observed in PEI-coated capillaries: The direction (and the magnitude) of EOF depends on the composition of the background electrolyte and at a certain pH it can undergo reversible change. Ionic complex formation was suggested as a hypothesis to explain this behavior. With this knowledge, the PEI-coated capillary was used for the separation of basic proteins in the above-mentioned background electrolytes. A standard protein mixture of cytochrome c, ribonuclease A, and lysozyme at a concentration of 0.25 mg/mL each was chosen as model sample.  相似文献   

18.
Many cellular functions are regulated through protein isoforms. Changes in the expression level or regulatory dysfunctions of isoforms often lead to developmental or pathological disorders. Isoforms are traditionally analyzed using techniques such as gel- or capillary-based isoelectric focusing. However, with proper electro-osmotic flow (EOF) control, isoforms with small pI differences can also be analyzed using capillary zone electrophoresis (CZE). Here we demonstrate the ability to quickly resolve isoforms of three model proteins (bovine serum albumin, transferrin, alpha1-antitrypsin) in capillaries coated with novel dynamic coatings. The coatings allow reproducible EOF modulation in the cathodal direction to a level of 10(-9) m2V(-1)s(-1). They also appear to inhibit protein adsorption to the capillary wall, making the isoform separations highly reproducible both in peak areas and apparent mobility. Isoforms of transferrin and alpha1-antitrypsin have been implicated in several human diseases. By coupling the CZE isoform separation with standard affinity capture assays, it may be possible to develop a cost-effective analytical platform for clinical diagnostics.  相似文献   

19.
Dynamic computer simulation data are compared for the first time with CE data obtained with a laboratory made system comprising an array of 8 contactless conductivity detectors (C4Ds). The experimental setup featured a 50 μm id linear polyacrylamide (LPA) coated fused‐silica capillary of 70 cm length and a purpose built sequential injection analysis manifold for fluid handling of continuous or discontinuous buffer configurations and sample injection. The LPA coated capillary exhibits a low EOF and the manifold allows the placement of the first detector at about 2.7 cm from the sample inlet. Agreement of simulated electropherograms with experimental data was obtained for the migration and separation of cationic and anionic analyte and system zones in CZE configurations in which EOF and other column properties are constant. For configurations with discontinuous buffer systems, including ITP, experimental data obtained with the array detector revealed that the EOF is not constant. Comparison of simulation and experimental data of ITP systems provided the insight that the EOF can be estimated with an ionic strength dependent model similar to that previously used to describe EOF in fused‐silica capillaries dynamically double coated with Polybrene and poly(vinylsulfonate). For the LPA coated capillaries, the electroosmotic mobility was determined to be 17‐fold smaller compared to the case with the charged double coating. Simulation and array detection provide means for quickly investigating electrophoretic transport and separation properties. Without realistic input parameters, modeling alone is not providing data that match CE results.  相似文献   

20.
Sanzgiri RD  McKinnon TA  Cooper BT 《The Analyst》2006,131(9):1034-1043
Capillary zone electrophoresis (CZE) has been used to resolve the charge heterogeneity of an intact ( approximately 150 kDa) monoclonal IgG antibody (mAb). Although this microheterogeneity can also be observed by isoelectric focusing, CZE allows the net charge of each variant to be measured as a function of pH and other solution conditions. Separation was achieved in both borate and Tris run buffers using capillaries that had been statically coated with hydroxypropylcellulose (HPC). The HPC coating makes inadvertent chromatographic retention of the mAb undetectably small and decreases electroosmotic flow (EOF) to approximately 10(-5) cm(2) V(-1) s(-1), with reasonable stability over dozens of runs under the conditions tested (pH 8.5 and 9.0 for each buffer). We also describe a novel means of measuring small, positive EOF coefficients and larger, negative net mobilities in the same run. This allows determination of accurate electrophoretic mobilities despite variations in EOF. The resolved mAb charge variants (which most likely result from deamidation or partial truncation) constitute what we call an "intrinsic" charge ladder. As with conventional charge ladders formed by deliberate modification of a homogeneous protein, net charge is obtained by extrapolating a plot of electrophoretic mobility versus (assumed) incremental charge difference. At a given pH, the mAb is more negatively charged in borate than in Tris, reflecting specific binding of the B(OH)(4)(-) anion. We also report hydrodynamic radii calculated from the slopes of these plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号