首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We illustrate a generalization of Bell's inequality which is not limited to spin-1/2 or photon systems and does not depend on model-dependent assumptions. We then construct a specific class of examples, in terms of the decaying state and the correlated observables to be measured on the decay products, for which this inequality is violated by quantum mechanics. Finally we discuss the basic and practical problems involved in the measurement of these correlations.  相似文献   

3.
Quaternionic quantum mechanics is investigated in the light of the great success of complex quantum mechanics. It is shown that to reproduce the results of complex quantum mechanics, quaternionic quantum mechanics must contain complex quantum mechanics.  相似文献   

4.
Various formalisms for recasting quantum mechanics in the framework of classical mechanics on phase space are reviewed and compared. Recent results in stochastic quantum mechanics are shown to avoid the difficulties encountered by the earlier approach of Wigner, as well as to avoid the well-known incompatibilities of relativity and ordinary quantum theory. Specific mappings among the various formalisms are given.  相似文献   

5.
An extension of the formalism of quantum mechanics to the case where the canonical variables are valued in a field ofp-adic numbers is considered. In particular the free particle and the harmonic oscillator are considered. In classicalp-adic mechanics we consider time as ap-adic variable and coordinates and momentum orp-adic or real. For the case ofp-adic coordinates and momentum quantum mechanics with complex amplitudes is constructed. It is shown that the Weyl representation is an adequate formulation in this case. For harmonic oscillator the evolution operator is constructed in an explicit form. For primesp of the form 4l+1 generalized vacuum states are constructed. The spectra of the evolution operator have been investigated. Thep-adic quantum mechanics is also formulated by means of probability measures over the space of generalized functions. This theory obeys an unusual property: the propagator of a massive particle has power decay at infinity, but no exponential one.  相似文献   

6.
A convex scheme of quantum theory is outlined where the states are not necessarily the density matrices in a Hilbert space. The physical interpretation of the scheme is given in terms of generalized “impossibility principles”. The geometry of the convex set of all pure and mixed states (called a statistical figure) is conditioned by the dynamics of the system. This provides a method of constructing the statistical figures for non-linear variants of quantum mechanics where the superposition principle is no longer valid. Examples of that construction are given and its possible significance for the interrelation between quantum theory and general relativity is discussed.  相似文献   

7.
8.
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists’ laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr’s quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.  相似文献   

9.
10.
Recently the possibility was raised that time can be regarded as a dynamical variable. This leads to the formulation of discrete mechanics, with the usual continuum mechanics appearing as an approximation. The difference between these two is examined in this paper.  相似文献   

11.
12.
Machida and Namiki developed a many-Hilbert-spaces formalism for dealing with the interaction between a quantum object and a measuring apparatus. Their mathematically rugged formalism was polished first by Araki from an operator-algebraic standpoint and then by Ozawa for Boolean quantum mechanics, which approaches a quantum system with a compatible family of continuous superselection rules from a notable and perspicacious viewpoint. On the other hand, Foulis and Randall set up a formal theory for the empirical foundation of all sciences, at the hub of which lies the notion of a manual of operations. They deem an operation as the set of possible outcomes and put down a manual of operations at a family of partially overlapping operations. Their notion of a manual of operations was incorporated into a category-theoretic standpoint into that of a manual of Boolean locales by Nishimura, who looked upon an operation as the complete Boolean algebra of observable events. Considering a family of Hilbert spaces not over a single Boolean locale but over a manual of Boolean locales as a whole, Ozawa's Boolean quantum mechanics is elevated into empirical quantum mechanics, which is, roughly speaking, the study of quantum systems with incompatible families of continuous superselection rules. To this end, we are obliged to develop empirical Hilbert space theory. In particular, empirical versions of the square root lemma for bounded positive operators, the spectral theorem for (possibly unbounded) self-adjoint operators, and Stone's theorem for one-parameter unitary groups are established.  相似文献   

13.
ABSTRACT

An interpretation of quantum mechanics dating back to mid-1950s, based on the ideas of Hugh Everett III, has found a new lease on life in recent decades. Significant efforts have been made by physicists and philosophers of physics to bring advances in physics and philosophy to bear on the interpretation, and to overcome some of the shortcomings in Everett's bold, but limited writings. This article presents an introduction to Everettian quantum mechanics.  相似文献   

14.
We give a general construction for supersymmetric Hamiltonians in quantum mechanics. We find that N-extended supersymmetry imposes very strong constraints, and for N > 4 the Hamiltonian is integrable. We give a variety of examples, for one-particle and for many-particle systems, in different numbers of dimensions.  相似文献   

15.
The basic properties of nonrelativistic finite-dimensional quantum mechanics are presented. A discrete quantum mechanics is developed. Second quantization, the symmetric and antisymmetric Fock spaces are also discussed.  相似文献   

16.
17.
Using the notion of symplectic structure and Weyl (or star) product of non-commutative geometry, we construct unitary representations for the Galilei group and show how to rewrite the Schrödinger equation in phase space. This approach gives rise to a new procedure to derive Wigner functions without the use of the Liouville-von Neumann equation. Applications are presented by deriving the states of linear and nonlinear oscillators in terms of amplitudes of probability in phase space. The notion of coherent states is also discussed in this context.  相似文献   

18.
19.
We consider the 0 limit of the quantum dynamics generated by the HamiltonianH()=–(2/2m)+V. We prove that the evolution of certain Gaussian states is determined asymptotically as 0 by classical mechanics. For suitable potentialsV inn3 dimensions, our estimates are uniform in time and our results hold for scattering theory.Supported in part by the National Science Foundation under Grant PHY 78-08066  相似文献   

20.
The fundamental axioms of the quantum theory do not explicitly identify the algebraic structure of the linear space for which orthogonal subspaces correspond to the propositions (equivalence classes of physical questions). The projective geometry of the weakly modular orthocomplemented lattice of propositions may be imbedded in a complex Hilbert space; this is the structure which has traditionally been used. This paper reviews some work which has been devoted to generalizing the target space of this imbedding to Hilbert modules of a more general type. In particular, detailed discussion is given of the simplest generalization of the complex Hilbert space, that of the quaternion Hilbert module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号