首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The simultaneous measurement of structural and chemical information at the atomic scale provides fundamental insights into the connection between form and function in materials science and nanotechnology. We demonstrate structural and chemical mapping in Bi(0.5) Sr(0.5) MnO3 using an aberration-corrected scanning transmission electron microscope. Two-dimensional mapping is made possible by an adapted method for fast acquisition of electron energy-loss spectra. The experimental data are supported by simulations, which help to explain the less intuitive features.  相似文献   

3.
4.
5.
6.
7.
8.
9.
We present ab initio density-functional simulations of the state of several semiconductor surfaces at temperatures near the bulk melting temperatures. We find that the solid-liquid phase-transition temperature at the surface can be altered via a microscopic (single-monolayer) coating with a different lattice-matched semiconducting material. Our results show that a single-monolayer GaAs coating on a Ge(110) surface above the Ge melting temperature can dramatically reduce the diffusion coefficient of the germanium atoms, going so far as to prevent melting of the bulk layers on the 10 ps time scale. In contrast, a single-monolayer coating of Ge on a GaAs(110) surface introduces defects into the bulk and induces melting of the top layer of GaAs atoms 300 K below the GaAs melting point. To our knowledge, these calculations represent the first ab initio investigation of the superheating and induced melting phenomena.  相似文献   

10.
This paper is a review of the known effects of hydrogen in crystalline semiconductor grain-boundaries and interfaces and of the recent progress in the fundamental study of the mechanisms of hydrogen-interfaces interactions. The interfaces considered are: grain boundaries of polycrystalline semiconductors, semiconductor/semiconductor or semiconductor/metal interfaces, silicon/silicon oxide interfaces (including precipitated silicon oxide interfaces), and semiconductor/electrolyte interfaces. The influence of structural and electronic defects on the hydrogen passivation processes is discussed. Emphasis is laid upon the role of segregated impurities on the electrical activity of interfaces and its subsequent passivation by hydrogen. Some ideas are given for development of experimental and theoretical research to improve the understanding of the mechanisms of hydrogen action.  相似文献   

11.
有机半导体多层薄膜器件的性质很大程度上由有机-有机界面的传输性质所决定,但是现有的关于有机-有机界面的分析模型很难适用于实际器件的模拟.以Miller-Abrahams跳跃传导理论为基础,充分考虑有机-有机界面和金属-有机界面性质的不同,建立了一个新的描述有机-有机异质界面电荷传输的解析模型.结果表明有机异质界面的载流子传输不仅取决于界面的肖特基势垒,而且还取决于界面附近两边的电场强度和载流子浓度.此模型可用于有机半导体多层薄膜器件的电流密度、电场分布和载流子浓度分布的自洽计算. 关键词: 有机半导体 界面 载流子传输  相似文献   

12.
A clear correlation was found between experimental heterojunction valence-band discontinuities locally measured by photoemission spectroscopy and the LCAO results of the Harrison model. In particular, we found that the theoretical discontinuities are accurate within 0.1–0.15 eV for lattice-matched interfaces. Empirical corrections for the bond-length difference in lattice-mismatched interfaces generally improve the agreement between theory and experiment.  相似文献   

13.
We demonstrate that well prepared and characterized Cr tips can provide atomic resolution on the bulk NaCl(001) surface with dynamic atomic force microscopy in the noncontact regime at relatively large tip-sample separations. At these conditions, the surface chemical structure can be resolved yet tip-surface instabilities are absent. Our calculations demonstrate that chemical identification is unambiguous, because the interaction is always largest above the anions. This conclusion is generally valid for other polar surfaces, and can thus provide a new practical route for straightforward interpretation of atomically resolved images.  相似文献   

14.
The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed.  相似文献   

15.
16.
《Current Applied Physics》2020,20(1):132-136
Recently, spintronics devices using MoS2 and ferromagnetic electrode have been in the spotlight. However, strong Fermi level pinning (FLP) is known to occur between MoS2 and ferromagnetic electrode, resulting in a large Schottky barrier height (SBH), which makes it difficult to inject electron from ferromagnetic electrode to semiconductor. To resolve this problem, we study the reduction of FLP occurring between two materials by investigating the effect of atomic passivation at Ni-MoS2 interfaces on contact behaviors. Such atomic passivation can reduce the FLP and magnetic moments induced at S atoms of MoS2. Especially, the largest decrease in the FLP occurs in the case of H atom passivation. Besides, the N, O, and F atom passivation confirms the possibility of ohmic contact, indicated from small SBHs (~0.2 eV). As a result, the SBH and thus the efficiency of the device can be controlled by atomic passivation at metal-semiconductor interfaces.  相似文献   

17.
Recent development in the experimental and theoretical analysis of semiconductor surfaces is described. Special attention is given to the Secondary Ion Mass Spectroscopy technique and to its use in the ultrasensitive elemental analysis of semiconductors. Applications to III–V compounds are described.  相似文献   

18.
Transmission electron microscopy (TEM) has become an indispensable technique for studying heterogeneous catalysts. In particular, advancements of aberration-corrected electron optics and data acquisition schemes have made TEM capable of delivering images of catalysts with sub-Ångström resolution and single-atom sensitivity. Parallel developments of differentially pumped electron microscopes and of gas cells enable in situ observations of catalysts during the exposure to reactive gas environments at pressures of up to atmospheric levels and temperatures of up to several hundred centigrade. Here, we outline how to take advantage of the emerging state-of-the-art instrumentation and methodologies to study surface structures and dynamics to improve the understanding of structure-sensitive catalytic functionality. The concept of using low electron dose-rates in TEM in conjunction with in-line holography and aberration-correction at low voltage (80 kV) is introduced to allow maintaining atomic resolution and sensitivity during in situ observations of catalysts. Benefits are illustrated by exit wave reconstructions of TEM images of a nanocrystalline Co3O4 catalyst material acquired in situ during their exposure to either a reducing or oxidizing gas environment.  相似文献   

19.
20.
It is shown that the resonance features analogous to the well known optic Wood-type anomalies can be observed in the THz region for diffraction at periodically profiled semiconductor surfaces. The analytical theory of such resonance processes caused by excitation of surface plasmon polaritons (SPPs) is developed. It is shown that strong resonance effects such as total suppression of the specular reflection (TSSR) can be achieved for rather small inclinations of harmonic gratings. The analytical theory predictions are confirmed by strict numerical simulations. The analytical approach presented allows one to find parameters of the gratings so that the resonance diffraction results in specific redistributions of the reflected energy between different diffraction channels. As an example we demonstrate parameters of the InSb biharmonic grating responsible for the TSSR accompanied by 50% reflection in the minus first diffraction order when the SPP is excited in the plus first diffraction order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号