首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using the achiral diazine ligands bearing two bidentate pyridylimino groups as sources of conformational chirality, five azido-bridged coordination polymers are prepared and characterized crystallographically and magnetically. The chirality of the molecular units is induced by the coordination of the diazine ligands in a twisted chiral conformation. The use of L(1) (1,4-bis(2-pyridyl)-1-amino-2,3-diaza-1,3-butadiene) and L(2) (1,4-bis(2-pyridyl)-1,4-diamino-2,3-diaza-1,3-butadiene) induces spontaneous resolution, yielding conglomerates of chiral compounds [Mn(3)(L(1))(2)(N(3))(6)](n) (1) and [Mn(2)(L(2))(2)(N(3))(3)](n)(ClO(4))(n).nH(2)O (2), respectively, where triangular (1) or double helical (2) chiral units are connected into homochiral one-dimensional (1D) chains via single end-to-end (EE) azido bridges. The chains are stacked via hydrogen bonds in a homochiral fashion to yield chiral crystals. When L(3) (2,5-bis(2-pyridyl)-3,4-diaza-2,4-hexadiene) is employed, a partial spontaneous resolution occurs, where binuclear chiral units are interlinked into fish-scale-like homochiral two-dimensional (2D) layers via single EE azido bridges. The layers are stacked in a heterochiral or homochiral fashion to yield simultaneously a racemic compound, [Mn(2)(L(3))(N(3))(4)](n) (3a), and a conglomerate, [Mn(2)(L(3))(N(3))(4)](n).nMeOH (3b). On the other hand, the ligand without amino and methyl substituents (L(4), 1,4-bis(2-pyridyl)-2,3-diaza-1,3-butadiene) does not induce spontaneous resolution. The resulting compound, [Mn(2)(L(4))(N(3))(4)](n) (4), consists of centrosymmetric 2D layers with alternating single diazine, single EE azido, and double end-on (EO) azido bridges, where the chirality is destroyed by the centrosymmetric double EO bridges. These compounds exhibit very different magnetic behaviors. In particular, 1 behaves as a metamagnet built of homometallic ferrimagnetic chains with a unique "fused-triangles" topology, 2 behaves as a 1D antiferromagnet with alternating antiferromagnetic interactions, 3a and 3b behave as spin-canted weak ferromagnets with different critical temperatures, and 4 also behaves as a spin-canted weak ferromagnet but exhibits two-step magnetic transitions.  相似文献   

2.
Gao EQ  Bai SQ  Wang CF  Yue YF  Yan CH 《Inorganic chemistry》2003,42(25):8456-8464
Three one-dimensional (1D) azido-bridged coordination polymers of formula [Cu(L)(N3)2]n (1), [Cu2(Me-L)(N3)4]n (2), and [Mn(L)(N3)2]n (3) have been synthesized and structurally characterized, and their magnetic properties studied, where L and Me-L are 2-(pyrazol-1-ylmethyl)pyridine and 2-(3-methylpyrazol-1-ylmethyl)pyridine, respectively. Compound 1 consists of 1D chains in which the Cu(II) ions with a square pyramidal geometry are alternately bridged by an end-to-end (EE) and an end-on (EO) azido ligands, both adopting a basal-apical disposition. Compound 2 exhibits an unprecedented chain topology built via three different kinds of EO azido bridges. Four Cu(II) ions in the square pyramidal environment are alternately bridged by single and double EO bridges to form a tetranuclear cyclic ring, and neighboring rings are interlinked by double EO bridges to generate a "chain of rings". The intraannular double azido ions are disposed between metal ions in a basal-basal fashion, and the other two kinds of azido ions adopt the basal-apical disposition. Compound 3 consists of 1D concave-convex chains in which cis-octahedrally coordinated Mn(II) ions are alternately bridged by double EE and double EO bridges. There exist pi-pi interactions between the ligands bound to the neighboring Mn(II) ions bridged by the EO bridges. Temperature- and field-dependent magnetic analyses reveal alternate ferromagnetic interactions for 1, dominating ferromagnetic interactions for 2, and alternating ferro- and antiferromagnetic interactions through the EO and EE azido bridges for 3, respectively.  相似文献   

3.
Three homochiral layered complexes, [Cu3(R-chea)2(N3)6]n (1), [Cu3(S-chea)2(N3)6]n (2) (chea = 1-cyclohexylethylamine) and [Cu3(S-phpa)2(N3)6]n (3) (phpa = 1-phenylpropylamine), and three novel cluster-based coordination polymers, [Cu6(1,2-pn)4(N3)12]n (4) (1,2-pn = 1,2-diaminopropane), [[Cu8(en)4(N3)16] x H2O]n (5) (en = ethylenediamine) and [Cu6(N-Ipren)2(N3)12]n (6) (N-Ipren = N-isopropylethylenediamine), have been synthesized by the self-assembly reactions of Cu(NO3)2 x 3H2O, NaN3 and small organic amine ligands. Their crystal structures are determined by single-crystal X-ray diffraction. Complexes are composed of neutral 2D brick wall networks with only end-on azido bridges. Complexes and are 3D coordination polymers featuring copper-azido clusters and [Cu(diamine)2]2+ units which are linked by the azido bridges. Complex is a 3D coordination framework based on the hexanuclear copper(II) clusters [Cu6(N3)12(N-Ipren)2]. Magnetic studies show that complexes are interesting chiral ferromagnets with the magnetic transition temperature at ca. 5.0 K. Complexes and show ferromagnetic coupling in the copper-azido cluster units and antiferromagnetic interaction between neighboring units, while complex shows ferromagnetic ordering at 3.2 K.  相似文献   

4.
Wen HR  Wang CF  Song Y  Zuo JL  You XZ 《Inorganic chemistry》2005,44(24):9039-9045
One-dimensional chiral copper(II) and manganese(II) coordination polymers with single asymmetric end-to-end (EE) azide bridges, [Cu(R-L)2(N3)]n(ClO4)n (1), [Cu(S-L)2 (N3)]n(ClO4)n (2), [Mn(R-L)2(N3)]n(ClO4)n (3), and [Mn(S-L)2(N3)]n(ClO4)n (4) (R-L or S-L = R- or S-pyridine-2-carbaldehyde-imine), have been synthesized, using azide ions as bridging groups and chiral Schiff bases as auxiliary ligands, and characterized. The crystal structure determination of complexes 1 and 2 reveals the formation of one-dimensional chiral chains, in which the central Cu(II) ion is six-coordinate in the form of an elongated octahedron. Complex 3 consists of chiral helical polymeric chains, in which the central Mn(II) has a slightly distorted octahedral geometry. They all crystallize in the chiral space group P2(1). Complexes 1 and 2 are rare examples that exhibit ferromagnetic interaction between copper(II) ions through the single end-to-end azido bridge. Fitting the susceptibility data for 1 using a 1D uniform chain model led to the parameters J = 0.70(3) cm(-1), g = 2.06(2), and zj' = 0.07(2) cm(-1). The magnetic studies on 3 and 4 show that there is weak antiferromagnetic coupling between the manganese(II) ions.  相似文献   

5.
Gao EQ  Cheng AL  Xu YX  He MY  Yan CH 《Inorganic chemistry》2005,44(24):8822-8835
Four new inorganic-organic hybrid coordination polymers in which 1D or 2D manganese(II) azido inorganic motifs are interlinked into higher-dimensional networks have been synthesized by use of a series of bis(pyridyl)-type organic bridging ligands (linkers) with different side groups and/or different coordination orientations. The dimensionality and the topology of the manganese(II) azido motif and the whole structure are sensitive to the organic linkers used. Compounds 1 and 3 are 3D coordination polymers with pillared-layer architectures: in 1, 2D Mn(II) layers with alternate double end-on (EO) and single end-to-end (EE) azido bridges are pillared by zigzag organic linkers, and 3 is built from single EE azido-bridged Mn(II) layers and linear organic linkers. The 3D nets of 1, 3, and related compounds have been related to the specific length and coordination orientation of the organic pillars and the undulate shape of the manganese(II) azido layers. Consistent with their structures, both 1 and 3 exhibit weak ferromagnetism due to spin canting. Compound 1 is a weak ferromagnet with T(c) = 16 K, and 3 is a metamagnet with T(c) = 23 K. On the other hand, compounds 2 and 4 are 2D coordination networks in which 1D manganese(II) azido chains are interlinked by organic linkers: 2 is the first 2D network built from Mn(II) chains with alternate double EE and double EO azido bridges, which mediate antiferro- and ferromagnetic interactions, respectively; 4 is the first 2D network built from Mn(II) chains with only single EE azido bridges, which mediate antiferromagnetic interactions. The magnetic susceptibility of 4 exhibits a rapid rise at very low temperature, which may be attributed to paramagnetic impurities or spin canting.  相似文献   

6.
A novel one-dimensional manganese(Ⅱ) complex containing nitronyl nitroxide radical [Mn2(IM2-py)2(Ac)2((μ1.1-N3)(μ1,3-N3) . EtOH]n was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group p21/n. Each Mn(Ⅱ) ion is six-coordinated in a distorted octahedral environment. The two N atoms of the nitronyl nitroxide radical and the two O atoms of acetate ligands are in the equatorial plane, whereas the two different azido bridging ligands are in trans axial position. Mn(Ⅱ) ions are linked by nitrogen atom of μ1,1-azido and oxygen atoms of two carboxy groups to form a Mn-Mn unit. Mn-Mn units are linked by azido ligands through u1,3 bridging style to form a one-dimensional chain. The compound is connected by the coordination bonds,π-π interactions and hydrogen bonds as a three-dimensional structure. Magnetic susceptibility data support that there are stronger antiferromagnetic interactions between the radical and Mn(Ⅱ) ion, weak antiferromagnetic inter  相似文献   

7.
A 2D homochiral inorganic-organic framework {[Mn(NPTA)(4,4'-bpy)(H(2)O)]·(H(2)O)(2)}(n) was prepared by assembling achiral polar 4-nitrophthalic acid, manganese ions, and ancillary 4,4'-bipyridine ligands (NPTA = 4-nitrophthalate) (4,4'-bpy = 4,4'-bipyridine). The isomorphous Zn(ii) compound was also prepared as a diamagnetic analogue. Adjacent manganese spin centres are linked by the syn-anti carboxylate to form a helical chain, and chains of the same chirality are connected by 4,4'-bpy ligands to generate a homochiral layered framework. Edge-to-face aromatic interactions between neighboring layers lead to a 3D homochiral supramolecular structure. Magnetization and heat capacity measurements indicate that the framework is a weak antiferromagnet at low applied field. The magnetic interactions between adjacent manganese ions in the helical chain can be fitted using the 1D Fisher model, with 2J/k = -0.68 K and g = 2.00. Moreover, the compound displays a unique field-dependent spin-flop transition in high magnetic fields, with a critical field of 23.6 kOe at 1.9 K.  相似文献   

8.
Two novel three-dimensional coordination polymers [Cu(6)(N(3))(12)(N-Eten)(2)](n) (1) (N-Eten=N-ethylethylenediamine) and {[Cu(9)(N(3))(18)(1,2-pn)(4)].H(2)O}(n) (2) (1,2-pn=1,2-diaminopropane) have been synthesized by the self-assembly reactions of Cu(NO(3))(2).3H(2)O, NaN(3) and small diamine ligands. Their molecular structures were determined by single-crystal X-ray diffraction. Complex 1 is composed of a neutral 3D coordination framework based on unprecedented hexanuclear copper(ii) clusters which features three types of bridging modes for azide (mu-1,1, mu-1,3 and mu-1,1,3). Complex 2 is a novel 3D coordination polymer featuring octanuclear copper-azido clusters and [Cu(diamine)(2)](2+) units which are linked by azido bridges. Magnetic studies for complex show ferromagnetic ordering at 3.5 K, where the azido bridges mediate ferromagnetic coupling between adjacent Cu(II) ions. The magnetic data for 1 were fitted to a uniform hexanuclear copper model which yielded g=2.21, J=6.26 cm(-1), zJ'=0.39 cm(-1). Complex 2 shows ferromagnetic coupling in the octanuclear unit and antiferromagnetic interaction between neighboring units.  相似文献   

9.
Spontaneous separation of chiral phases was observed in the monolayers of a racemate of gemini-type twin-tailed, twin-chiral amphiphiles, (2R,3R)-(+)-bis(decyloxy)succinic acid and (2S,3S)-(-)-bis(decyloxy)succinic acid. The pressure-area isotherms of the interfacial monolayers formed at the liquid-air interface, and the 2D lattice structures studied through surface probe measurements revealed that the racemate exhibits a homochiral discrimination of the enantiomers in two dimensions. An enantiomeric excess (e,e) of 20% was sufficient to break the chiral symmetry at the air-water interface for a homochiral interaction. Langmuir monolayers on ZnCl2 and CaCl2 subphases manifested chiral discrimination with Zn2+ evidencing homochiral interaction with a chelate-type complex, whereas Ca2+ resulted in a heterochiral interaction forming an ionic-type complex. For the chiral asymmetric units, oblique and rectangular unit cells of the racemic monolayer had exclusive requirements of homo- and heterochiral recognitions for Zn2+ and Ca2+ ions, respectively. Monolayers transferred from the condensed phase at 25 mN/m onto hydrophilic Si(100) and quartz substrates revealed the formation of bilayers through transfer-induced monolayer buckling. The emergence of homochiral discrimination was explained using the effective-pair-potential (EPP) approach.  相似文献   

10.
Gao EQ  Bai SQ  Yue YF  Wang ZM  Yan CH 《Inorganic chemistry》2003,42(11):3642-3649
Five Mn(II)[bond]azido coordination polymers of formula [Mn(L)(N(3))(2)](n) have been synthesized and crystallographically characterized, and their magnetic properties studied, where L's are the bidentate Schiff bases obtained from the condensation of pyridine-2-carbaldehyde with aniline (1) and its derivatives p-toluidine (2), m-toluidine (3), p-chloroaniline (4), and m-chloroaniline (5). All the complexes consist of the zigzag Mn(II)[bond]azido chains in which the Mn(II) ions are alternately bridged by two end-to-end (EE) and two end-on (EO) azido ligands, the cis-octahedral coordination being completed by the two nitrogen atoms of the Schiff base ligands. Compound 2 is unique in that the Mn[bond](EE-N(3))(2)[bond]Mn ring adopts an unusual twist conformation with the two linear azido bridges crossing each other. By contrast, the rings in the other compounds take the usual chair conformation with the two azido bridges parallel. The double EO bridging fragments in the complexes are similar with the bridging angles (Mn[bond]N[bond]Mn) ranging from 99.6 degrees to 104.0 degrees. Magnetic analyses reveal that alternating ferro- and antiferromagnetic interactions are mediated through the alternating EO and EE azido bridges with the J(F) and J(AF) parameters in the ranges of 4.1-8.0 and -11.8 to -15.4 cm(-1), respectively. Finally, the magnetostructural correlations are investigated. The present complexes follow the general trend that the ferromagnetic interaction through the double EO bridge increases with the Mn[bond]N[bond]Mn bridging angle, while the antiferromagnetic interaction through the double EE bridge is dependent on the distortion of the Mn[bond](N(3))(2)[bond]Mn ring from planarity toward the chair conformation and the Mn[bond]N[bond]N angle.  相似文献   

11.
Four enantiomerically pure 3D chiral POM-based compounds, [Ni(2)(bbi)(2)(H(2)O)(4)V(4)O(12)]2 H(2)O (1 a and 1 b) and [Co(bbi)(H(2)O)V(2)O(6)] (2 a and 2 b) (bbi=1,1'-(1,4-butanediyl)bisimidazole) based on the achiral ligand, different vanadate chains, and different metal centers have been synthesized by hydrothermal methods. Single-crystal X-ray diffraction analyses revealed that 1 a and 1 b, and 2 a and 2 b, respectively, are enantiomers. In 1 a and 1 b two kinds of vanadate chains with different screw axes link Ni cations to generate 3D chiral inorganic skeletons, which are connected by the achiral bbi ligands to form complicated 3D 3,4-connected chiral self-penetrating frameworks with (7(2)8)(7(2)8(2)9(2))(7(3)8(2)10) topology. They represent the first examples of chiral self-penetrating frameworks known for polyoxometalate (POM) systems. Contrary to 1 a and 1 b, in 2 a and 2 b the vanadate chains link Co(II) cations to generate 3D chiral inorganic skeletons, which are assembled from two kinds of heterometallic helical units of opposite chirality along the c axes. The chiral inorganic skeletons are connected by bbi to form 3D 3,4-connected chiral POM-based frameworks with (6(2)8)(2)(6(2)8(2)10(2)) topology. It is believed that the asymmetrical coordination modes of the metal cations in 1 a-2 b generate the initial chiral centers, and that the formation of the various helical units and the hydrogen bond interactions are responsible for preservation of the chirality and spontaneous resolution when the chirality is extended into the homochiral 3D-networks. This is the first known report of chiral POM-based compounds consisting of 3D chiral inorganic skeletons being obtained by spontaneous resolution upon crystallization in the absence of any chiral source, which may provide a rational strategy for synthesis of chiral POM-based compounds by using achiral ligands and POM helical units.  相似文献   

12.
A new diazine tetratopic helicand, H4L, is obtained from 3-formylsalicylic acid and hydrazine. The reaction between H4L and cobalt(II) perchlorate, iron(III) perchlorate, and sodium carbonate leads to triple-stranded tetranuclear anionic helicates, [L3Co(II)2Fe(III)2]2-, which are connected through Na ions, resulting in chiral coordination polymers, [L3Na2Fe2Co2(H2O)4(EtOH)2].3H2O.  相似文献   

13.
Gao Q  Wang X  Jacobson AJ 《Inorganic chemistry》2011,50(18):9073-9082
A chiral cluster compound, dipotassium bis(μ-tartrato)diantimony(III), K(2)Sb(2)L(2) (H(4)L = L-tartaric acid), was used as a secondary building unit to react with lanthanide ions. Three series of homochiral coordination compounds were obtained: 0D [La(H(2)L)(H(2)O)(4)](2)[Sb(2)L(2)]·7H(2)O (0D-La), 1D Ln(Sb(2)L(2))(H(2)O)(5)(NO(3))·H(2)O (1D-Ln) (Ln = La-Lu or Y, expect Pm), 2D(I) [(Ln(H(2)O)(5))(2)(Sb(2)L(2))(3)]·5H(2)O (2D(I)-Ln) (Ln = La, Ce, Pr), and 2D(II) [(La(H(2)O)(5))(2)(Sb(2)L(2))(3)]·6H(2)O (2D(II)-La). Single-crystal X-ray diffraction studies indicated that 0D-La crystallizes in space group P1, and the structure contains isolated Sb(2)L(2)(2-) units located between chains of composition La(H(2)L)(H(2)O)(4). The series of 1D-Ln compounds is isostructural and crystallizes in space group P2(1)2(1)2(1). In the structure, Sb(2)L(2)(2-) units are coordinated to two Ln ions by two out of the four free tartrate oxygen atoms to form a linear chain. To the best of our knowledge, this is the first example of a homochiral structure that can be formed for the whole lanthanide series. In the 2D(I)-Ln structure series, which crystallizes in space group P2(1), the Sb(2)L(2)(2-) units have two distinct coordination modes: one is the same as that found in the 1D structure, while in the other all four free tartrate oxygen atoms are coordinated to four Ln ions in a very distorted tetrahedral arrangement. The connectivity between Sb(2)L(2)(2-) secondary units and LnO(9) polyhedra gives rise to infinite layers. 2D(II) [(La(H(2)O)(5))(2)(Sb(2)L(2))(3)]·6H(2)O, which crystallizes in space group C2, has a similar network to the 2D(I)-Ln compounds. The trends in lattice parameters, bond lengths, and ionic radii in the 1D-Ln series were analyzed to show the effect of the lanthanide contraction.  相似文献   

14.
Reaction of Cu(ClO(4))(2) x 6H(2)O with a racemic mixture of the novel chiral ligand N-(1,2-bis(2-pyridyl)ethyl)pyridine-2-carboxamide (PEAH) affords only the homochiral dimeric copper(II) complexes [Cu(2)((R)()PEA)(2)](ClO(4))(2) and [Cu(2)((S)()PEA)(2)](ClO(4))(2) in a 1:1 ratio. The phenomenon of molecular self-recognition is also observed when a racemic mixture of the monomeric copper(II) complex [Cu((R(S))()PEA)(Cl)(H(2)O)] is converted into the homochiral dimeric species [Cu(2)((R(S))()PEA)(2)](ClO(4))(2) via reaction with Ag(+) ion. This is the first report of direct conversion of a racemic mixture of a chiral monomeric copper(II) complex to a mixture of the homochiral dimers.  相似文献   

15.
The reaction of the chiral dipeptide glycyl‐L(S)‐glutamate with CoII ions produces chiral ladders that can be used as rigid 1D building units. Spatial separation of these building units with linkers of different lengths allows the engineering of homochiral porous MOFs with enhanced pore sizes, pore volumes, and surface areas. This strategy enables the synthesis of a family of isoreticular MOFs, in which the pore size dictates the enantioselective adsorption of chiral molecules (in terms of their size and enantiomeric excess).  相似文献   

16.
Abstract

A mixed ligand 1:2 manganese(II) azido complex of ethyl nicotinate has been synthesized and characterized by spectroscopic and crystallographic methods. The structure consists of a two-dimensional manganese-azido compound with each manganese atom in a trans octahedral environment, bonded to four azido ligands [Mn?N = from 2.199(4) Å to 2.231(3) Å] and two axial ethyl nicotinate ligands [Mn-N = 2.285(3) and 2.308(3) Å]. Two azido ligands are coordinated end-on between the manganese atoms giving planar and centrosymmetric Mn2N2 units. Each Mn2N2 unit is linked to four neighboring Mn2N2 units by means of four end-to-end azido bridges. The IR and Raman spectra correlate with the structure of the complex. The vibrational bands are compared with those of the free ligand. The EPR spectra of polycrystalline powder and solutions of the complex are measured at room temperature and discussed. The thermal decomposition of the complex was investigated derivatographically under nitrogen.  相似文献   

17.
Qu ZR  Zhao H  Wang XS  Li YH  Song YM  Liu YJ  Ye Q  Xiong RG  Abrahams BF  Xue ZL  You XZ 《Inorganic chemistry》2003,42(24):7710-7712
The reactions of (S)-3-cyanophenylalanine with NaN(3) in the presence of H(2)O and Lewis acids (ZnCl(2) and CdCl(2)) afford two unprecedented 3D homochiral networks, mono[(S)-5-(3-tetrazoyl)-phenylalaninato]zinc(II) (1) and mono[(S)-5-(3-tetrazoyl)-phenylalaninato]cadmium(II) monoaqua(II) (2), respectively. The two compounds are isostructural with noninterpenetrated SrAl(2) topology. The structure of these coordination polymers gives new insight into Sharpless' reaction of chiral 5-substituted 1H-tetrazole and homochiral supramolecular array constructions.  相似文献   

18.
In the present work, we report a new manganese single-chain magnet built from tetranuclear Mn(II)(2)Mn(III)(2) mixed-valence units linked by end-on azido and oximato bridges. All of the intra- and intercluster interactions involve end-on azido bridges, resulting in one ferromagnetic chain of ferromagnetic clusters with local ground state S = 9.  相似文献   

19.
A novel one-dimensional manganese(II) complex containing nitronyl nitroxide radical [Mn2(IM2-py)2(Ac)21,1-N3)(μ1,3-N3) · EtOH] n was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group p21/n. Each Mn(II) ion is six-coordinated in a distorted octahedral environment. The two N atoms of the nitronyl nitroxide radical and the two O atoms of acetate ligands are in the equatorial plane, whereas the two different azido bridging ligands are in trans axial position. Mn(II) ions are linked by nitrogen atom of μ1,1-azido and oxygen atoms of two carboxy groups to form a Mn-Mn unit. Mn-Mn units are linked by azido ligands through μ1,3 bridging style to form a one-dimensional chain. The compound is connected by the coordination bonds, π-π interactions and hydrogen bonds as a three-dimensional structure. Magnetic susceptibility data support that there are stronger antiferromagnetic interactions between the radical and Mn(II) ion, weak antiferromagnetic interactions between the Mn-R units, and very weak antiferromagnetic interactions between the R-Mn-Mn-R units.  相似文献   

20.
A homochiral triple helix was self-assembled from an axially chiral bipyridine and a linear metal-connecting point, which further assembles into a 2D network via infinite pi...pi stacking interactions and acts as a host for the inclusion of guest molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号