共查询到20条相似文献,搜索用时 15 毫秒
1.
Thomas R. Stengle Saeed M. Hosseini Hosein G. Basiri Kenneth L. Williamson 《Journal of solution chemistry》1984,13(11):779-787
The chemical shift of elemental xenon in solution is sensitive to the environment. The shift arises from van der Waals interactions in most liquids, but an additional effect is present in aqueous media yielding a larger shift than expected. In water the shift is affected by the presence of low molecular weight amphiphiles, and its variation with composition can reveal the presence of hydrophobic hydration of the amphiphile. The results are similar to the conclusions drawn from other physical studies. Data are presented for aqueous solutions of methanol, ethanol, n-propanol, iso-propanol, tert-butanol, dimethylsulfoxide, p-dioxane, and acetonitrile. 相似文献
2.
The 1H chemical shifts of 124 compounds containing a variety of functional groups have been recorded in CDCl3 and DMSO-d6 (henceforth DMSO) solvents. The 1H solvent shift Delta delta = delta(DMSO) - delta(CDCl3) varies from -0.3 to +4.6 ppm. This solvent shift can be accurately predicted (rms error 0.05 ppm) using the charge model of alpha, beta, gamma and long-range contributions. The labile protons of alcohols, acids, amines and amides give both, the largest solvent shifts and the largest errors. The contributions for the various groups are tabulated and it is shown that for H.C.C.X gamma-effects (X = OH, NH, =O, NH.CO) there is a dihedral angle dependence of the gamma-effect. The group contributions are discussed in terms of the possible solvent-solute interactions. For protic hydrogens, hydrogen bonding is the dominant interaction, but for the remaining protons solvent anisotropy and electric field effects appear to be the major factors. 相似文献
3.
The solubilities of potassium fluoride, chloride, and bromide in acetonitrile, N,N-dimethylformamide, and dimethylsulfoxide and in binary mixtures of these solvents were determined at 25°C. The standard molar Gibbs free energies of solution, solnG°, in the neat solvents were related to the polarizabilities and basicities of the anions and the dipole moments and acidities of the solvents. The values of solnG° in the mixtures were fitted by expressions from the quasi-lattice quasi-chemical theory. The mean number of each kind of solvent in the nearest environment of the ions was obtained from these results. 相似文献
4.
5.
Abraham RJ Byrne JJ Griffiths L Koniotou R 《Magnetic resonance in chemistry : MRC》2005,43(8):611-624
The (1)H NMR spectra of a number of alcohols, diols and inositols are reported and assigned in CDCl(3), D(2)O and DMSO-d(6) (henceforth DMSO) solutions. These data were used to investigate the effects of the OH group on the (1)H chemical shifts in these molecules and also the effect of changing the solvent. Inspection of the (1)H chemical shifts of those alcohols which were soluble in both CDCl(3) and D(2)O shows that there is no difference in the chemical shifts in the two solvents, provided that the molecules exist in the same conformation in the two solvents. In contrast, DMSO gives rise to significant and specific solvation shifts. The (1)H chemical shifts of these compounds in the three solvents were analysed using the CHARGE model. This model incorporates the electric field, magnetic anisotropy and steric effects of the functional group for long-range protons together with functions for the calculation of the two- and three-bond effects. The long-range effect of the OH group was quantitatively explained without the inclusion of either the C--O bond anisotropy or the C--OH electric field. Differential beta and gamma effects for the 1,2-diol group needed to be included to obtain accurate chemical shift predictions. For DMSO solution the differential solvent shifts were calculated in CHARGE on the basis of a similar model, incorporating two-bond, three-bond and long-range effects. The analyses of the (1)H spectra of the inositols and their derivatives in D(2)O and DMSO solution also gave the ring (1)H,(1)H coupling constants and for DMSO solution the CH--OH couplings and OH chemical shifts. The (1)H,(1)H coupling constants were calculated in the CHARGE program by an extension of the cos(2)phi equation to include the orientation effects of electronegative atoms and the CH--OH couplings by a simple cos(2)phi equation. Comparison of the observed and calculated couplings confirmed the proposed conformations of myo-inositol, chiro-inositol, quebrachitol and allo-inositol. The OH chemical shifts were also calculated in the CHARGE program. Comparison of the observed and calculated OH chemical shifts and CH.OH couplings suggested the existence of intramolecular hydrogen bonding in a myo-inositol derivative. 相似文献
6.
Hoffman RE 《Magnetic resonance in chemistry : MRC》2006,44(6):606-616
The standard for chemical shift is dilute tetramethylsilane (TMS) in CDCl3, but many measurements are made relative to TMS in other solvents, the proton resonance of the solvent peak or relative to the lock frequency. Here, the chemical shifts of TMS and the proton and deuterium chemical shifts of the solvent signals of several solvents are measured over a wide temperature range. This allows for the use of TMS or the solvent and lock signal as a secondary reference for other NMR signals, as compared with dilute TMS in CDCl3 at a chosen temperature; 25 degrees C is chosen here. An accuracy of 0.02 ppm is achievable for dilute solutions, provided that the interaction with the solvent is not very strong. The proton chemical shift of residual water is also reported where appropriate. 相似文献
7.
Wayne J. DeWitte Lulu Liu Elizabeth Mei James L. Dye Alexander I. Popov 《Journal of solution chemistry》1977,6(5):337-348
Cesium-133 chemical shifts were measured in a number of solvents as a function of salt concentration and of the counterion. Infinite-dilution chemical shifts (vs. aqueous Cs+ ion at infinite dilution) ranged from +59.8 ppm for nitromethane solutions to –29.4 ppm for pyridine. In general, the magnitude of the downfield chemical shift reflected the donor ability of the solvents. Ion-pair formation constants were calculated from the concentration dependences of133Cs chemical shifts in several nonaqueous solvents. 相似文献
8.
Bagno A Bonchio M Autschbach J 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(33):8460-8471
The (183)W nuclear shielding in a variety of tungsten polyoxometalates (POM) (Lindqvist, Anderson, decatungstates, Keggin) of different shapes and charges has been modeled by DFT calculations that take into account relativistic effects, by means of the zero-order regular approximation (ZORA), and solvent effects, by the conductor-like screening model (COSMO) continuum method. The charge/surface area ratio (q/A) is proposed as an indicator of the charge density to which the solvation energies of all POMs are correlated in a satisfactory way. Among the various theoretical levels tested (ZORA scalar or spin-orbit, frozen-core or all-electron basis set, geometry optimization in the gas phase or in the continuum solvent, etc.), the best results are obtained when both geometry optimization in solvent and spin-orbit shielding are included (mean absolute error of delta=35 ppm). The quality of the computed chemical shifts depends systematically on the charge density as expressed by q/A; thus, POMs with low q/A ratios display the best agreement with experimental data. The performance of the method is such that computed values can aid the assignment of the (183)W NMR spectra of polyoxotungstates, as shown by the case of alpha-[PW(11)TiO(40)](5-), whose six signals are ranked computationally so as to almost reproduce the experimental ordering even though the signals are spaced by as little as 5 ppm. 相似文献
9.
《Magnetic resonance in chemistry : MRC》2003,41(8):626-628
15N isotopic enrichment was necessary for the unequivocal assignment of the 1H NMR lines to the protons in the NH–OH fragment of benzohydroxamic acid, BHXA, C6H5CONHOH, in dry dimethyl sulfoxide solutions. The assignment [δ(NH) = 11.21, δ(OH) = 9.01, 1J(15N,1H) = 102.2 Hz, 2J(15N,1H) <1.5 Hz], which is opposite to that used by other authors, confirms the assignment extended to BHXA by Brown and co‐workers from the spectra of acetohydroxamic acid. The enrichment allowed also assignment of the 29Si lines in the spectra of disilylated benzohydroxamic acid, (Z)‐tert‐butyldimethylsilyl N‐tert‐butyldimethylsilyloxybenzoimidate (2) and (Z)‐tert‐butyldiphenylsilyl N‐tert‐butyldiphenylsilyloxybenzoimidate (3), and confirmed structure of the monosilylated products, N‐tert‐butyldiphenylsilyloxybenzamide (4) and N‐tert‐butyldiphenylsilyloxy benzoimidic acid (5). Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
10.
An overview is given on recent advances of density functional theory (DFT) as applied to the calculation of nuclear magnetic
resonance (NMR) chemical shifts and electron spin resonance (ESR) g-tensors. This is a new research area that has seen tremendous progress and success recently; we try to present some of these
developments. DFT accounts for correlation effects efficiently. Therefore, it is the only first-principle method that can
handle NMR calculations on large systems like transition-metal complexes. Relativistic effects become important for heavier
element compounds; here we show how they can be accounted for. The ESR g-tensor is related conceptually to the NMR shielding, and results of g-tensor calculations are presented. DFT has been very successful in its application to magnetic properties, for metal complexes
in particular. However, there are still certain shortcomings and limitations, e.g., in the exchange-correlation functional,
that are discussed as well.
Received: 24 October 1997 / Accepted: 19 December 1997 相似文献
11.
Rosa M. Gomila Antonio Frontera David Quiñonero Antonio Costa 《Tetrahedron letters》2004,45(51):9387-9391
Several porphyrin dimers have been newly designed and synthesized to construct assemblies with 1,4-diazabicyclo[2.2.2]octane (DABCO) as a bidentate binding ligand. Semi empirical (AM1) and ab initio calculations have been used to study the assemblies generated by the organization of dimers and DABCO, including the computation of 1H NMR complexation-induced chemical shifts using the ab initio/GIAO methodology. The diagnostic capacity of the theoretical method has been applied to explain experimental results and geometrical features of the complexes. 相似文献
12.
Schofield MH Sorel MA Manalansan RJ Richardson DP Markgraf JH 《Magnetic resonance in chemistry : MRC》2006,44(9):851-855
The synthesis and assignment of 15N and 13C NMR signals of the isoxazole ring in a series of para-substituted 3-phenyl derivatives are reported. DFT calculations of 15N and 13C chemical shifts are presented and compared to observed values. Substituent effects are interpreted in terms of the Hammett correlation and calculated bond orders. 相似文献
13.
A computer program has been developed for predicting 1H NMR chemical shifts. It automatically finds the various substructures of a given molecule for which additivity rules are available. Several strategies have been used to widen the range of applicability. with 200 test compounds, over 90% of the assigned chemical shifts of protons bonded to a carbon atom could be predicted. The mean deviation between observed and predicted values was 0.08 ppm with a standard deviation of 0.19ppm. 相似文献
14.
L. A. Fedorov V. I. Dostovalova O. A. Arapov M. Yu. Malov 《Russian Chemical Bulletin》1994,43(4):713-714
The13C NMR spectra of a number of polychiorinated dibenzo-p-dioxins (PCDD) were measured. These and previously known spectra were used for the development of a method for calculation of13C NMR spectra of chloroaromatics in the framework of a two-particle increment scheme for carbon chemical shifts. The scheme one allows to calculate13C chemical shifts for all 75 PCDD.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 760–761, April, 1994. 相似文献
15.
《Magnetic resonance in chemistry : MRC》2002,40(7):480-482
1H, 13C and 15N NMR chemical shifts of 10 substituted pyrazolo[1,5‐a]pyrimidines were assigned based on DQF 1H, 1H COSY, PFG 1H, 13C HMQC and PFG 1H,X (X = 13C and 15N) HMBC experiments and on literature data. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
16.
GIAO/DFT evaluation of 13C NMR chemical shifts of selected acetals based on DFT optimized geometries
DFT/B3LYP calculations of the ground-state conformation of eight cyclic and acyclic acetals are presented and compared with experimental data. Results of single-point GIAO/DFT calculations at five different levels of theory show that isotropic shieldings need to be empirically scaled to achieve agreement with experimental chemical shifts. Statistical evaluation of data indicates that the most accurate prediction of 13C chemical shifts is achieved at the MPW1PW91/6-311G** level of theory. An empirical equation describing the relationship between delta values and shielding constants is postulated. This equation has been applied to the non-chair ground-state conformation of the six-membered acetonide and to the conformationally flexible benzodioxonine derivative. The agreement observed between the experimental and predicted chemical shifts shows that calculations at the MPW1PW91/6-311G** level of theory are adequate for addressing questions of conformation. 相似文献
17.
Amphiphilic films and hydrogels have been prepared from ethanol/water solutions containing a hydrocarbon-grafted water-soluble cellulose ether. These materials are characterized by dispersed hydrophobic microdomains which form spontaneously in the solvent due to the inherent incompatibility of the side chains with water. At low applied shear stress, the microdomains behave as temporary linkages of finite lifetimes, imparting viscoelastic properties to the networks. The molecular weight between microdomains was found to be independent of the volume fraction of polymer in the gel, and the number of linkages per backbone ranges from 22.8 ± 1.3 to 26.2 ± 1.5 over the frequency range 30–50 rad/s. The behavior of the solutions and gels was characterized using fluorescence and dynamic rheological measurements. It was demonstrated that the microdomains are capable of sequestering water-insoluble solutes. © 1992 John Wiley & Sons, Inc. 相似文献
18.
Andrea Frank Andreas Berkefeld Matthias Drexler Heiko M. Mller Thomas E. Exner 《International journal of quantum chemistry》2013,113(13):1787-1793
Neutral Ni(II) complexes have been shown to be highly valuable as robust and versatile catalysts in olefin polymerization. But they show reduced reactivity when the polar monomers methyl acrylate and vinyl acetate are incorporated. To get further insight into this behavior, NMR chemical shift calculations were performed on the system [(N,O) Ni (H) (PMe3)] 1 (N,O = ‐N,O‐{2,6‐(3,5‐(F3C)2C6H3)2C6H3) NC(H)‐3,5‐I2‐2‐O‐C6H2}). The chemical shifts show reasonable agreement with experiment but are also extremely influenced by geometrical features of the complex as well as the inserted substrate. The first prominent feature, the low‐field shift of the Ccarbonyl in the incorporated monomer, can only be reproduced when it is in close proximity to the Ni and in this way hinders the attack of a new monomer. Second, the almost 100 ppm difference in the chemical shift of the carbon of the two substrates directly bound to Ni can be reasoned by the different directionality of polarization as disclosed by natural bond orbital (NBO) analysis. © 2013 Wiley Periodicals, Inc. 相似文献
19.
Pazderski L Szłyk E Sitkowski J Kamieński B Kozerski L Tousek J Marek R 《Magnetic resonance in chemistry : MRC》2006,44(2):163-170
A series of Pd and Pt chloride complexes with pyridine (py), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen), of general formulae trans-/cis-[M(py)2Cl2], [M(py)4]Cl2, trans-/cis-[M(py)2Cl4], [M(bpy)Cl2], [M(bpy)Cl4], [M(phen)Cl2], [M(phen)Cl4], where M = Pd, Pt, was studied by 1H, 195Pt, and 15N NMR. The 90-140 ppm low-frequency 15N coordination shifts are discussed in terms of such structural features of the complexes as the type of platinide metal, oxidation state, coordination sphere geometry and the type of ligand. The results of quantum-chemical NMR calculations were compared with the experimental 15N coordination shifts, well reproducing their magnitude and correlation with the molecular structure. 相似文献
20.
15N chemical shifts in an extensive series of para (15) and meta (15) as well as ortho (8) substituted benzonitriles, X-C6H4-CN, were measured in deuteriochloroform solutions, using three different methods of referencing. The standard error of the average chemical shift was less than 0.03 ppm in most cases. The results are discussed for both empirical correlations with substituent parameters and quantum chemical calculations. The 15N chemical shifts calculated at the GIAO/B3LYP/6-31 + G*//B3LYP/6-31 + G* level reproduce the experimental values well, and include nitrogen atoms in the substituent groups (range of 300 ppm with slope 0.98 and R = 0.998, n = 43). The 15N shifts in hydroxybenzonitriles are affected by interaction with the OH group. Therefore, these derivatives are excluded from the correlation analysis. The resultant 15N chemical shift correlates well with substituent constants, both in the simple Hammett or DSP relationships and the 13C substituent-induced chemical shifts of the CN carbon. 相似文献