首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
Experiments show that a weakly conducting fluid in a plane-parallel system of electrodes is set into motion if the field intensity is sufficiently great [1–5]. The loss of stability is due to the formation of charges near the electrodes and the influence of the Coulomb forces on these charges. The formation of the space charges is usually attributed to oxidation-reduction electrode reactions and bulk recombination of the ions formed at the electrodes [1–4]. In the present paper, the stability of a weakly conducting fluid in a plane-parallel system of electrodes with symmetric distribution of the space charge is studied. The methods of the theory of solution bifurcation are used to construct the stationary flow which arises after the loss of stability and to investigate the stability of this flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 20–26, July–August, 1981.  相似文献   

2.
During the motion of a partially ionized gas in magnetohydrodynamic channels the distribution of the electrical conductivity is usually inhomogeneous due to the cooling of the plasma near the electrode walls. In Hall-type MHD generators with electrodes short-circuited in the transverse cross section of the channel the development of inhomogeneities results in a decrease of the efficiency of the MHD converter [1]. A two-dimensional electric field develops in the transverse section. Numerical computations of this effect for channels of rectangular cross section have been done in [2, 3], At the same time it is advisable to construct analytic solutions of model problems on the potential distribution in Hall channels, which would permit a qualitative analysis of the effect of the inhomogeneous conductivity on local and integral characteristics of the generators. In the present work an exact solution of the transverse two-dimensional problem is given for the case of a channel with elliptical cross section stretched along the magnetic field. The parametric model of the distribution of the electrical conductivity of boundary layer type has been used for obtaining the solution. The dependences of the electric field and the current and also of the integral electrical characteristics of the generator on the inhomogeneity parameters are analyzed.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 3–10, January–February, 1973.  相似文献   

3.
It is known from experiments [1–3] that the velocity of streamers, induced in the center of the interelectrode gap and propagating to the electrodes under conditions when the streamer length is comparable with the distance between the electrodes, increases linearly as the streamer length increases. This relationship is in qualitative agreement with theory [4], Nevertheless, the velocity of streamers starting from the electrodes and propagating in a long interelectrode gap remains practically constant during the whole propagation process [5, 6], In the case of short gaps (2–5 cm), constancy of the velocity is observed during the stage of the process when the length of the streamer is much less (20%) than the length of the gap [7], Since the electric field at its end controls the streamer propagation, the constancy of the streamer velocity indicates that the controlling field is constant under these conditions. A number of theoretical models were proposed in [8–13] which describe uniformly moving anode- and cathode-directed streamers (henceforth called anode and cathode streamers). Comparison of experimental data with the corresponding theoretical model enables one to determine the streamer parameters: the electric field, the charged-particle density, the current density, the channel radius, etc. In the case of an anode streamer in Xe an attempt at such a comparison was made, in particular, in [6]. However, the lack of reliable data on the value of the drift velocity and the diffusion coefficient of electrons in Xe for E/p (102 – 103) V/cm · mm Hg allowed only rough estimates to be made. In this paper a numerical calculation is made of the drift velocity, the diffusion coefficient of electrons in Xe, and the rate of excitation of Xe atoms in the resonance level in the range of values of E/p (101–103) V cm · mm Hg, and the volt-ampere characteristic of the breakdown is measured under conditions described in [6] (p0=300 mm Hg and E 104–105 V/cm). Using these results, the formulas for the velocity of anode [12] and cathode [13] streamers, and experimental data [6], the parameters of the streamers studied in [6] are determined.Translated from Zhurnal Prikladnoi Meknaniki i Tekhmcheskoi Fiziki, No. 3, pp. 6–11, May–June, 1976.The authors thank A. T. Rakhimov and A. N. Starostin for useful discussions, and A. V. Markov for help with the experiments.  相似文献   

4.
Results are given of a theoretical and experimental investigation of the intensive interaction between a plasma flow and a transverse magnetic field. The calculation is made for problems formulated so as to approximate the conditions realized experimentally. The experiment is carried out in a magneto-hydrodynamic (MHD) channel with segmented electrodes (altogether, a total of 10 pairs of electrodes). The electrode length in the direction of the flow is 1 cm, and the interelectrode gap is 0.5 cm. The leading edge of the first electrode pair is at x = 0. The region of interaction (the region of flow) for 10 pairs of electrodes is of length 14.5 cm. An intense shock wave S propagates through argon with an initial temperature To = 293 °K and pressure po = 10 mm Hg. The front S moves with constant velocity in the region x < 0 and at time t = 0 is at x = 0. The flow parameters behind the incident shock wave are determined from conservation laws at its front in terms of the gas parameters preceding the wave and the wave velocity WS. The parameters of the flow entering the interaction region are as follows: temperature T 0 1 = 10,000 °K, pressure P 0 1 = 1.5 atm, conduction 0 1 = 3000 –1·m–1, velocity of flow u 0 1 = 3000 m·sec–1, velocity of sounda 0 1 = 1600 m·sec–1, degree of ionization = 2%, 0.4. The induction of the transverse magnetic field B = [0, By(x), 0] is determined only by the external source. Induced magnetic fields are neglected, since the magnetic Reynolds number Rem 0.1. It is assumed that the current j = (0, 0, jz) induced in the plasma is removed using the segmented-electrode system of resistance Re. The internal plasma resistance is Ri = h(A)–1 (h = 7.2 cm is the channel height; A = 7 cm2 is the electrode surface area). From the investigation of the intensive interaction between the plasma flow and the transverse magnetic field in [1–6] it is possible to establish the place x* and time t* of formation of the shock discontinuity formed by the action of ponderomotive forces (the retardation wave RT), its velocity WT, and also the changes in its shape in the course of its formation. Two methods are used for the calculation. The characteristic method is used when there are no discontinuities in the flow. When a shock wave RT is formed, a system of nonsteady one-dimensional equations of magnetohydrodynamics describing the interaction between the ionized gas and the magnetic field is solved numerically using an implicit homogeneous conservative difference scheme for the continuous calculation of shock waves with artificial viscosity [2].Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 112–118, September–October, 1977.  相似文献   

5.
In a flow of plasma, set up by an ionizing shock wave and moving through a transverse magnetic field, under definite conditions there arises a gasdynamic shock wave. The appearance of such shock waves has been observed in experimental [1–4] and theoretical [5–7] work, where an investigation was made of the interaction between a plasma and electrical and magnetic fields. The aim of the present work was a determination of the effect of the intensity of the interaction between the plasma and the magnetic field on the velocity of the motion of this shock wave. The investigation was carried out in a magnetohydrogasdynamic unit, described in [8]. The process was recorded by the Töpler method (IAB-451 instrument) through a slit along the axis of the channel, on a film moving in a direction perpendicular to the slit. The calculation of the flow is based on the one-dimensional unsteady-state equations of magnetic gasdynamics. Using a model of the process described in [9], calculations were made for conditions close to those realized experimentally. In addition, a simplified calculation is made of the velocity of the motion of the above shock wave, under the assumption that its front moves at a constant velocity ahead of the region of interaction, while in the region of interaction itself the flow is steady-state.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 86–91, January–February, 1975.  相似文献   

6.
The paper is devoted to a nonlinear analysis of superheating [1, 2] instability of an electric discharge stabilized by electrodes [3] in the framework of a thermal model [4] where the stability of the discharge relative to the long-wave and short-wave perturbations is proved in a linear approximation. Similar boundary-value problems arise in the theories of chemically and biologically reacting mixtures [5–7], thermal breakdown of dielectrics [8], thermal explosion [9], in the investigation of nonlinear waves in semiconductors and superconductors [10, 11], and in the investigation of Couette flow with variable viscosity [12]. The uniqueness of the one-dimensional steady solutions of the thermal model of discharge and the stability relative to the small spatial perturbations, respectively, for the exponential and step dependence of the electrical conductivity on the temperature are proved in [3, 13]. The uniqueness of the solutions in the one-dimensional case for the same electrode temperature and arbitrary dependences of the electrical and thermal conductivity on the temperature is established in paper [14]. In the present paper, the existence and uniqueness of steady solutions of the thermal model of discharge in a three-dimensional formulation for arbitrary fairly smooth electrical and thermal conductivity functions of the temperature in the case of isothermal isopotential electrodes are proved analytically.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 140–145, January–February, 1986.The author expresses his gratitude to A. G. Kulikovskii and A. A. Barmin for the formulation of the problem and their discussions.  相似文献   

7.
At around the critical Reynolds number Re = (1.5–4.0)·105 there is an abrupt change in the pattern of transverse subsonic flow past a circular cylinder, and the drag coefficient Cx decreases sharply [1]. A large body of both experimental and computational investigations has now been made into subsonic flow past a cylinder [1–4]. A significant contribution to a deeper understanding of the phenomenon was made by [4], which gives a physical interpretation of a number of theoretical and experimental results obtained in a wide range of Re. Nevertheless, the complicated nonstationary nature of flow past a cylinder with separation and the occurrence of three-dimensional flows when two-dimensional flow is simulated in wind tunnels do not permit one to regard the problem as fully studied. The aim of the present work was to make additional experimental investigations into transverse subsonic flow past a cylinder and, in particular, to study the possible asymmetric stable flow regimes near the critical Reynolds number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 154–157, March–April, 1980.  相似文献   

8.
The influence of a permanent transverse magnetic field on the stability of a plane shock relative to small displacements of its front from the equilibrium position was examined in [1, 2]. Under the same simplifying assumptions, the stability of a shock in a longitudinal magnetic field (the induction vector is directed along the normal to the discontinuity) is investigated in this paper. The boundaries of the stability domain are determined. It is shown that the whole domain of neutral oscillations which exist in the gasdynamic case makes the transition into the stability domain in the presence of a longitudinal field. The boundaries of the stability domain are independent of the interaction parameter in contrast to the case of shock motion in a transverse field [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 195–198, March–April, 1976.  相似文献   

9.
In inhomogeneous electric fields, at sufficiently high field strengths, a weakly conducting liquid becomes unstable and is set in motion [1–4]. The cause of the loss of stability and the motion is the Coulomb force acting on the space charge formed by virtue of the inhomogeneity of the electrical conductivity of the liquid [4–13]. This inhomogeneity may be due to external heating [4–6], a local raising of the temperature by Joule heating [2, 7, 8], and nonlinearity of Ohm's law [9–13]. In the present paper, in the absence of a temperature gradient produced by an external source, a condition is found whose fulfillment ensures that the influence of Joule heating on the stability can be ignored. Under the assumption that this condition is satisfied, a criterion for stability of a weakly conducting liquid between spherical electrodes is obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–142, July–August, 1979.  相似文献   

10.
Using the boundary-layer equations as a basis, the author considers the propagation of plane jets of conducting fluid in a transverse magnetic field (noninductive approximation).The propagation of plane jets of conducting fluid is considered in several studies [1–12]. In the first few studies jet flow in a nonuniform magnetic field is considered; here the field strength distribution along the jet axis was chosen in order to obtain self-similar solutions. The solution to such a problem given a constant conductivity of the medium is given in [1–3] for a free jet and in [4] for a semibounded jet; reference [5] contains a solution to the problem of a free jet allowing for the dependence of conductivity on temperature. References [6–8] attempt an exact solution to the problem of jet propagation in any magnetic field. An approximate solution to problems of this type can be obtained by using the integral method. References [9–10] contain the solution obtained by this method for a free jet propagating in a uniform magnetic field.The last study [10] also gives a comparison of the exact solution obtained in [3] with the solution obtained by the integral method using as an example the propagation of a jet in a nonuniform magnetic field. It is shown that for scale values of the jet velocity and thickness the integral method yields almost-exact values. In this study [10], the propagation of a free jet is considered allowing for conduction anisotropy. The solution to the problem of a free jet within the asymptotic boundary layer is obtained in [1] by applying the expansion method to the small magnetic-interaction parameter. With this method, the problem of a turbulent jet is considered in terms of the Prandtl scheme. The Boussinesq formula for the turbulent-viscosity coefficient is used in [12].This study considers the dynamic and thermal problems involved with a laminar free and semibounded jet within the asymptotic boundary layer, propagating in a magnetic field with any distribution. A system of ordinary differential equations and the integral condition are obtained from the initial partial differential equations. The solution of the derived equations is illustrated by the example of jet propagation in a uniform magnetic field. A similar solution is obtained for a turbulent free jet with the turbulent-exchange coefficient defined by the Prandtl scheme.  相似文献   

11.
In an inhomogeneously heated weakly conductive liquid (electrical conductivity 10–12–1 cm–1) located in a constant electric field a volume charge is induced because of thermal inhomogeneity of electrical conductivity and dielectric permittivity. The ponderomotive forces which develop set the liquid into intense motion [1–6]. However, under certain conditions equilibrium proves possible, and in that case the question of its stability may be considered. A theoretical analysis of liquid equilibrium stability in a planar horizontal condenser was performed in [2, 4]. Critical problem parameters were found for the case where Archimedean forces are absent [2]. Charge perturbation relaxation was considered instantaneous. It was shown that instability is of an oscillatory character. In [4] only heating from above was considered. Basic results were obtained in the limiting case of disappearingly small thermal diffusivity in the liquid (infinitely high Prandtl numbers). In the present study a more general formulation will be used to examine convective stability of equilibrium of a vertical liquid layer heated from above or below and located in an electric field. For the case of a layer with free thermally insulated boundaries, an exact solution is obtained. Values of critical Rayleigh number and neutral oscillation frequency for heating from above and below are found Neutral curves are constructed. It is demonstrated that with heating from below instability of both the oscillatory and monotonic types is possible, while with heating from above the instability has an oscillatory character. Values are found for the dimensionless field parameter at which the form of instability changes for heating from below and at which instability becomes possible for heating from above.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 16–23, September–October, 1976.In conclusion, the author thanks E. M. Zhukhovitskii for this interest in the study and valuable advice.  相似文献   

12.
At high supersonic flight speeds bodies with a star-shaped transverse and power-law longitudinal contour are optimal from the standpoint of wave drag [1–3]. In most of the subsequent experimental [4–6] and theoretical [6–9] studies only conical star-shaped bodies have been considered. For these bodies in certain flow regimes ascent of the Ferri point has been noted [10]. In [11] the boundary-value problem for elongated star-shaped bodies with a power-law longitudinal contour was solved for the case of supersonic flow. The present paper deals with the flow past these bodies at an angle of attack. It is found that for arbitrary star-shaped bodies with any longitudinal (in particular, conical) profile the aerodynamic forces can be reduced to a wave drag and a lift force, the lateral force on these bodies being equal to zero for any position of the transverse contour.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 135–141, November–December, 1989.  相似文献   

13.
It is known that a breakdown in gases can take place in two fundamental ways: by diffusion (the Townsend breakdown) or by forming a narrow current channel (the streamer breakdown). At present there are no reliable criteria for one or another of these mechanisms to occur. It is also an open question as far as the pressure region p < 10 mm Hg [I] is concerned. Even in the case of special preionization it is not always possible to avoid the streamer stage breakdown. It is obvious that the fundamental cause of a streamer breakdown is related to higher intensity of the electric field around the localized zone of higher conductivity [2]. In [3] the superiority was shown of using numerical methods in the analysis of an axisymmetric cathode directed streamer between two flat electrodes in nitrogen. In the present article the results are described of computations carried out to find out whether a mechanism is feasible for fusing the discharge at any early stage of ignition for the geometry of a flat electrode plane, which is the most favorable to an anode-oriented streamer. This effect was investigated within the framework of a nonstationary system of three equations in which the ionization processes, the recombinations in the balance of charged particles as well as the effect if space charge on the electric-field distribution have been taken into account [4], One has ignored the diffusion, which is also favorable to the streamer breakdown.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 49–54, September–October, 1978.The authors would like to express their thanks to A. A. Vedenov, A. P. Napartovich, and A. N. Starostin for their unceasing interest in this work and useful discussions.  相似文献   

14.
The flow from the tip of a needle electrode is caused by the Coulomb force acting on the space charge [1–3]. This charge is formed because of the dependence of the conductivity on the temperature, nonuniformity of which is due to Joule heating [1] and the electric field intensity [2] or processes near the electrode [3–5]. The present paper considers the stability of a dielectric liquid between spherical electrodes in order to elucidate the possibility of a thermoelectrohydrodynainic flow due to Joule heating. In the presence of external heating, the possibility of such a flow has been demonstrated both experimentally and theoretically [6–8].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 133–137, March–April, 1980.  相似文献   

15.
It is known [1–4] that an unsteady gamma source gives rise to an electromagnetic field in the surrounding space. Most of the studies of the characteristics of such fields have been performed in the approximation which is linear in the field [1–3]. An exception is [4] in which the slowing down of Compton electrons by the electric field is taken into account. It follows from [1, 2] that the characteristic scale of the fields created close to the source is of the order of 3 · 104 V/m. Although this value is appreciably lower than the value of breakdown fields in air, electric discharges are observed [5] in the vicinity of a gamma source, indicating the presence of substantially larger fields. One effect not taken into account in the latter approximation which could lead to an increase in the field is the increase in electron termperature due to the electric field [6]. On the one hand, this decreases the electron mobility and consequently also the conductivity of the system, On the other hand, it is known that the electron attachment coefficient for electronegative molecules strongly affects the characteristics of electric fields and depends on the electron energy. Therefore, the electron balance equation must take account of the dependence of on the electric field through the electron energy, and this leads to a further change in conductivity. We take account of these effects on the shaping of electric fields in air in the vicinity of the source. It is assumed that electron lifetimes are determined solely by their attachment to molecules. This is a good approximation for air pressures near normal [1–3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 163–170, July–August, 1976.  相似文献   

16.
An analysis is made of the effects of certain processes in the interior of the gas and at the electrode surface on the potential drop near the electrode in a discharge in a dense, slightly ionized gas. Thermionic emission from the electrode, the Schottky effect, diffusion, and volume and surface ionization and recombination are taken into account. The analysis is carried out for a simple discharge-gap geometry: two infinite, plane-parallel electrodes. Relations are found for the potential drop near the electrode in a two-temperature plasma as a function of the discharge parameters and emission characteristics of the material. The calculated results are compared with experiment.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 3–12, July–August, 1971.The authors thank G. A. Lyubimov for interest in the study and for discussion of the results, and B. V. Parfenov for graciously furnishing the necessary experimental data from [13].  相似文献   

17.
The special features of the distribution of the magnetic field in the photosphere of the Sun and the experimental discovery of waves which propagate along magnetic tubes in the solar atmosphere have brought about the publication recently of a large number of articles which study the wave-conducting properties of media with a magnetic structure. One of the simplest cases was that of a plane magnetic layer, which was studied in detail in the linear approximation [1–3]. Starting from the dispersion properties of such a structure, [4] indicates the possibility of the existence in it of solitons in the approximation of waves of low amplitude which are long in relation to the layer. The present study has used the method of different-scale expansions to obtain the Schrödinger equation describing the propagation of nonlinear modulations of a symmetric harmonic mode over a plane magnetic layer in an incompressible fluid. A similar equation has been deduced, for example, for waves in water [5–9].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, 164–168, March–April, 1985.The author wishes to thank M. S. Ruderman for formulating the problem and for useful discussions, and V. B. Baranov for his attention to the study.  相似文献   

18.
The flow of an electrically conductive liquid past a solid spherical particle at low Reynolds and Hartmann numbers in longitudinal and transverse magnetic fields was first investigated in [1,2]. The effect of a weak magnetic field on the strength of the resistance of a conductive drop in a dielectric medium was considered in [3]. In the present paper we consider the motion of a conductive liquid drop in an electrically conductive medium and calculate the strength of the resistance in the Stokes approximation for an arbitrary orientation of the uniform magnetic field and in the Oseen approximation for the case in which the direction of the magnetic field coincides with the direction of the oncoming stream. As in the previous studies, we do not consider the possibility of the formation of a double layer on the interface between the phases.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 19–25, November–December, 1978.The authors are grateful to G. I. Petrov and the participants in the seminar they conducted for their comments on the work.  相似文献   

19.
We study within the framework of linear theory the stability of plane-parallel flows of a viscous, electrically conducting fluid in a transverse magnetic field. The magnetic Reynolds numbers are assumed small. The critical Reynolds number as a function of the Hartmann number is obtained over the entire range of variation of the latter. The small perturbation spectrum is studied in detail on the example of Hartmann flow. Neutral curves are constructed for symmetric and antisymmetric disturbances. The destablizing effect of a magnetic field is studied in the case of modified Couette flow. The results obtained agree with the calculations of Lock and Kakutani (where they meet) and are at variance with the results of Pavlov.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 3, pp. 127–131, May–June, 1970.The authors wish to thank M. A. Gol'dshtik for his interest in this study.  相似文献   

20.
Experimental investigations into the stability of a plane jet [1, 2] show that after the stationary flow has lost its stability a stable autooscillatory regime arises. In the present paper, an autooscillatory flow in a jet is studied theoretically on the basis of a plane-parallel flow in a fairly wide channel in the presence of a field of external forces. The external forces are such that at zero amplitude of the autooscillations they produce a Bickley—Schlichting velocity profile. The excitation of the secondary regimes is studied by the methods of bifurcation theory [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 26–32, May–June, 1979.We thank M. A. Gol'dshtik and V. N. Shtern for discussing the formulation of the problem and the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号