首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. ASP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling recon- struction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.  相似文献   

2.
The utility of multivoxel two-dimensional chemical shift imaging in the clinical environment will ultimately be determined by the imaging time and the metabolite peaks that can be detected. Different k-space sampling schemes can be characterized by their minimum required imaging time. The use of spiral-based readout gradients effectively reduces the minimum scan time required due to simultaneous data acquisition in three k-space dimensions (k(x), k(y) and k(f(2))). A 3-T spiral-based multivoxel two-dimensional spectroscopic imaging sequence using the PRESS excitation scheme was implemented. Good performance was demonstrated by acquiring preliminary in vivo data for applications, including brain glutamate imaging, metabolite T(2) quantification and high-spatial-resolution prostate spectroscopic imaging. All protocols were designed to acquire data within a 17-min scan time at a field strength of 3 T.  相似文献   

3.
Turbo Spin Echo (TSE) is a sequence of choice for obtaining T(2)-weighted images. TSE reduces acquisition time by acquiring several echoes within each TR, at the cost of introducing an exponential weighting in the k-space that leads to a certain image blurring. This is particularly important for short-T(2) structures, which can even disappear if their size in the phase encoding direction is comparable to the degree of blurring. This article suggests the use of a combination of Half Fourier (HF) and segmented (multishot) TSE (sHF-TSE) to recover the original resolution of the SE images. The improved symmetry of the dataset achieved by HF reconstruction is used to increase the resolution of the TSE images. The proposed combination, available in most clinical scanners, reduces the blurring artifact inherent to the TSE sequence without increasing the scan time or the number of acquisitions, but at the cost of a slight reduction of the signal-to-noise ratios (SNR). Qualitative and quantitative results are presented using both numerical simulation and imaging. Significant edge enhancement has been achieved for structures with short T(2), (narrowing of the full width at half maximum [FWHM] up to 45%). The proposed sequence is more sensitive to movement artifacts but has proven to be superior to the conventional TSE for imaging static structures.  相似文献   

4.
The tradeoff between spatial and temporal resolution is often used to increase data acquisition speed for dynamic MR imaging. Reduction of the k-space sampling area, however, leads to stronger partial volume and truncation effects. A two dimensional prolate spheroidal wave function (2D-PSWF) method is developed to address these problems. Utilizing prior knowledge of a given region of interest (ROI) and the spatial resolution requirement as constraints, this method tailors the k-space sampling area with a matching 2D-PSWF filter so that optimal signal concentration and minimal truncation artifacts are achieved. The k-space sampling area is reduced because the shape and size of the sampling area match the resolution posed by the non-rectangular shape of a convex ROI. The 2D-PSWF method offers an efficient way for spatial and temporal tradeoff with minimal penalty due to truncation, and thus, it promises a wide range of applications in MRI research.  相似文献   

5.
PurposeWhile O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts.Theory and methodsA sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging.ResultsExperimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image.ConclusionsHigh resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging.  相似文献   

6.
The purpose of this study is to compare two types of sequences in brain magnetic resonance (MR) examinations of uncooperative and cooperative patients. For each group of patients, the pairs of sequences that were compared were two T2-weighted (T2-W) fluid attenuated inversion recovery sequences with different k-space trajectories (conventional Cartesian and BLADE) and two T2-TSE weighted with different k-space trajectories (conventional Cartesian and BLADE). Twenty-three consecutive uncooperative patients and 44 cooperative patients, who routinely underwent brain MR imaging examination, participated in the study. Both qualitative and quantitative analyses were performed based on the signal-to-noise ratio, contrast-to-noise ratio (CNR), and relative contrast (ReCon) measures of normal anatomic structures. The qualitative analysis was performed by experienced radiologists. Also, the presence of motion, other (e.g., Gibbs, susceptibility artifacts, phase encoding from vessels) artifacts and pulsatile flow artifacts was evaluated.  相似文献   

7.
Motion artifacts in MRI may be reduced by optimized view ordering. Extensive simulations of view-ordering techniques were performed on high-resolution phantom images to determine the best strategy for distributing motion in k-space. Although not exhaustive, simulation results indicate that minimizing motion at the center of k-space is critical to overall image quality. For 2D imaging, using edge-center-edge view order and setting the readout direction parallel to the direction of the motion produces the sharpest point spread function and the lowest image energy error. For 3D imaging, using an edge-center-edge view order proves to be the optimum choice in general. Given these observations, several important issues regarding the measurement of motion effects are discussed.  相似文献   

8.
A novel approach for sampling k-space in a pure phase encoding imaging sequence is presented using the Single Point Imaging (SPI) technique. The sequence is optimised with respect to the achievable Signal-to-Noise ratio (SNR) for a given time interval via selective sparse k-space sampling, dictated by prior knowledge of the overall object of interest's shape. This allows dynamic processes featuring short T(2)( *) NMR signal to be more readily followed, in our case the absorption of moisture by a cereal-based wafer material. Further improvements in image quality are also shown via the use of complete sampling of k-space at the start or end of the series of imaging experiments; followed by subsequent use of this data for un-sampled k-space points as opposed to zero filling.  相似文献   

9.
Traditionally, Fourier spectroscopic imaging is associated with a small k-space coverage which leads to truncation artifacts such as "bleeding" and ringing in the resultant image. Because substantial truncation artifacts mainly arise from regions having intense signals, such as the subcutaneous lipid in the head, effective reduction of truncation artifacts can be achieved by obtaining an extended k-space coverage for these regions. In this paper, a hybrid technique which employs phase-encoded spectroscopic imaging (SI) to cover the central portion of the k-space and echo-planar spectroscopic imaging (EPSI) to measure the peripheral portion of the k-space is developed. EPSI, despite its inherently low SNR characteristics, provides a sufficient SNR for outer high-spatial frequency components of the aforementioned high signal regions and supplies an extended k-space coverage of these regions for the reduction of truncation artifacts. The data processing includes steps designed to remove inconsistency between the two types of data and a previously described technique for selectively retaining only outer k-space information for the high signal regions during the reconstruction. Experimental studies, in both phantoms and normal volunteers, demonstrate that the hybrid technique provides significant reduction in truncation artifacts.  相似文献   

10.
Truncation artifacts arise in magnetic resonance spectroscopic imaging (MRSI) of the human brain due to limited coverage of k-space necessitated by low SNR of metabolite signal and limited scanning time. In proton MRSI of the head, intense extra-cranial lipid signals “bleed” into brain regions, thereby contaminating signals of metabolites therein. This work presents a data acquisition strategy for reducing truncation artifact based on extended k-space coverage achieved with a dual-SNR strategy. Using the fact that the SNR in k-space increases monotonically with sampling density, dual-SNR is achieved in an efficient manner with a dual-density spiral k-space trajectory that permits a smooth transition from high density to low density. The technique is demonstrated to be effective in reducing “bleeding” of extra-cranial lipid signals while preserving the SNR of metabolites in the brain.  相似文献   

11.
The Look-Locker (LL) imaging method provides an accurate and efficient approach for mapping the spin-lattice relaxation time, T(1). However, the same recovery of signal during LL image acquisition required to estimate T(1) also results in unwanted modulation of k-space. This is particularly problematic with 3D LL imaging as the number of phase-encoding steps during the recovery interval (e.g., 16) increases in an effort to reduce imaging times. This modulation of k-space has the effect of introducing a point spread function (PSF), which can lead to either image blurring (if the earlier tip angles are assigned to the centre of k-space) or edge enhancement (if the earlier tip angles are assigned to the edges of k-space), thus corrupting T(1) estimation, particularly for small objects. In this study, the PSF and its effect on the acquired images for four different interleaved phase-encode schemes (centric-in, centric-out, sequential and hybrid-sequential) are simulated for a range of T(1), tip angle and 3D LL acquisition parameters expected in practice. It is shown by simulation and confirmed experimentally in phantoms that a hybrid sequential phase-encoding scheme reduces image blurring while maintaining T(1) accuracy ( approximately 2%) and precision (2%) over a range of object sizes down to 2 pixels (2 mm).  相似文献   

12.
Two strategies for the optimization of centric scan SPRITE (single point ramped imaging with T1 enhancement) magnetic resonance imaging techniques are presented. Point spread functions (PSF) for the centric scan SPRITE methodologies are numerically simulated, and the blurring manifested in a centric scan SPRITE image through PSF convolution is characterized. Optimal choices of imaging parameters and k-space sampling scheme are predicted to obtain maximum signal-to-noise ratio (SNR) while maintaining acceptable image resolution. The point spread function simulation predictions are verified experimentally. The acquisition of multiple FID points following each RF excitation is described and the use of the Chirp z-Transform algorithm for the scaling of field of view (FOV) of the reconstructed images is illustrated. Effective recombination of the rescaled images for SNR improvement and T*2 mapping is demonstrated.  相似文献   

13.
Pediatric oncology patients with large metallic prostheses were imaged with one of two MR imaging techniques: 1) the "tilted view-angle" technique, 2) or a higher readout bandwidth technique. The tilted view-angle method uses an additional gradient in the slice selection direction during readout. The high bandwidth technique increases the readout bandwidth and shortens the echo time (TE). High bandwidth and short echo times were implemented in both T(1)-weighted (T(1)W) turbo spin echo and turbo short tau inversion recovery (STIR) sequences. Both imaging techniques reduced the size of metal-induced image artifacts. The tilted view-angle method reduced the artifact to a greater degree but had inherent shortcomings. The reformatted images were blurred and shifted. The area of interest was often moved outside of the field of view, unless parameters were adjusted on the basis of a pre-scan calculation. The high readout bandwidth, short echo technique required no special preparation and reduced metal artifacts without image blurring. The combination of high-bandwidth, shorter echo turbo STIR and T(1)W turbo spin echo sequences with subtraction of pre- from post-contrast images allowed effective fat suppression without local field inhomogeneity affects. This greatly improved our ability to evaluate suspected disease near metallic implants in pediatric cancer patients.  相似文献   

14.
MR images are affected by system delays and gradient field imperfections which induce discrepancies between prescribed and actual k-space trajectories. This could be even more critical for non-Cartesian data acquisitions where even a small deviation from the assumed k-space trajectory results in severe image degradation and artifacts. Knowledge of the actual k-space trajectories is therefore crucial and can be incorporated in the reconstruction of high quality non-Cartesian images. A novel MR method for the calibration of actual gradient waveforms was developed using a combination of phase encoding increments and subsequent detection of the exact time point at which the corresponding trajectory is crossing the k-space origin. The measured sets of points were fitted to a parametrical model to calculate the complete actual acquisition trajectory. Measurements performed on phantoms and volunteers, positioned both in- and off-isocenter of the magnet, clearly demonstrate the improvement in reconstructed ultrashort echo time (UTE) images, when information from calibration of k-space sampling trajectories is employed in the MR image reconstruction procedure. The unique feature of the proposed method is its robustness and simple experimental setup, making it suitable for quick acquisition trajectory calibration procedures e.g. for non-Cartesian radial fast imaging.  相似文献   

15.
Compressed sensing (CS) and partially parallel imaging (PPI) enable fast magnetic resonance (MR) imaging by reducing the amount of k-space data required for reconstruction. Past attempts to combine these two have been limited by the incoherent sampling requirement of CS since PPI routines typically sample on a regular (coherent) grid. Here, we developed a new method, “CS+GRAPPA,” to overcome this limitation. We decomposed sets of equidistant samples into multiple random subsets. Then, we reconstructed each subset using CS and averaged the results to get a final CS k-space reconstruction. We used both a standard CS and an edge- and joint-sparsity-guided CS reconstruction. We tested these intermediate results on both synthetic and real MR phantom data and performed a human observer experiment to determine the effectiveness of decomposition and to optimize the number of subsets. We then used these CS reconstructions to calibrate the generalized autocalibrating partially parallel acquisitions (GRAPPA) complex coil weights. In vivo parallel MR brain and heart data sets were used. An objective image quality evaluation metric, Case-PDM, was used to quantify image quality. Coherent aliasing and noise artifacts were significantly reduced using two decompositions. More decompositions further reduced coherent aliasing and noise artifacts but introduced blurring. However, the blurring was effectively minimized using our new edge- and joint-sparsity-guided CS using two decompositions. Numerical results on parallel data demonstrated that the combined method greatly improved image quality as compared to standard GRAPPA, on average halving Case-PDM scores across a range of sampling rates. The proposed technique allowed the same Case-PDM scores as standard GRAPPA using about half the number of samples. We conclude that the new method augments GRAPPA by combining it with CS, allowing CS to work even when the k-space sampling pattern is equidistant.  相似文献   

16.
PurposeTo improve image quality of multi-contrast imaging with the proposed Autocalibrated Parallel Imaging Reconstruction for Extended Multi-Contrast Imaging (APIR4EMC).MethodsAPIR4EMC reconstructs multi-contrast images in an autocalibrated parallel imaging reconstruction framework by adding contrasts as virtual coils. Compensation of signal evolution along the echo train of different contrasts is performed to improve signal prediction for missing samples. As a proof of concept, we performed prospectively accelerated phantom and in-vivo brain acquisitions with T1, T1-fat saturated (Fatsat), T2, PD, and FLAIR contrasts. The k-space sampling patterns of these acquisitions were jointly optimized. Images were jointly reconstructed with the proposed APIR4EMC method as well as individually with GRAPPA. Root mean square error (RMSE) to fully sampled reference images and g-factor maps were computed for both methods in the phantom experiment. Visual evaluation was performed in the in-vivo experiment.ResultsCompared to GRAPPA, APIR4EMC reduced artifacts and improved SNR of the reconstructed images in the phantom acquisitions. Quantitatively, APIR4EMC substantially reduced noise amplification (g-factor) as well as RMSE compared to GRAPPA. Signal evolution compensation reduced artifacts. In the in-vivo experiments, 1 mm3 isotropic 3D images with contrasts of T1, T1-Fatsat, T2, PD, and FLAIR were acquired in as little as 7.5 min with the acceleration factor of 9. Reconstruction quality was consistent with the phantom results.ConclusionCompared to single contrast reconstruction with GRAPPA, APIR4EMC reduces artifacts and noise amplification in accelerated multi-contrast imaging.  相似文献   

17.
The combination of contrast preparation with centric-scan SPRITE imaging readout is investigated. The main benefit of SPRITE, its ability to image objects with short T2, is retained. We demonstrate T1 and T2 mapping as examples of magnetisation preparation followed by magnetisation storage and spatially resolved encoding. A strategy for selection of the most advantageous imaging parameters for contrast mapping is presented.  相似文献   

18.
The rapid biexponential transverse relaxation of the sodium MR signal from brain tissue requires efficient k-space sampling for quantitative imaging in a time that is acceptable for human subjects. The flexible twisted projection imaging (flexTPI) sequence has been shown to be suitable for quantitative sodium imaging with an ultra-short echo time to minimize signal loss. The fidelity of the k-space center location is affected by the readout gradient timing errors on the three physical axes, which is known to cause image distortion for projection-based acquisitions. This study investigated the impact of these timing errors on the voxel-wise accuracy of the tissue sodium concentration (TSC) bioscale measured with the flexTPI sequence. Our simulations show greater than 20% spatially varying quantification errors when the gradient timing errors are larger than 10 μs on all three axes. The quantification is more tolerant of gradient timing errors on the Z-axis. An existing method was used to measure the gradient timing errors with <1 μs error. The gradient timing error measurement is shown to be RF coil dependent, and timing error differences of up to ~16 μs have been observed between different RF coils used on the same scanner. The measured timing errors can be corrected prospectively or retrospectively to obtain accurate TSC values.  相似文献   

19.
PURPOSE: This study aimed to investigate the use of anatomically tailored hexagonal sampling for scan-time and error reduction in MRI. MATERIALS AND METHODS: Anatomically tailored hexagonal MRI (ANTHEM), a method that combines hexagonal sampling with specific symmetry in anatomical geometry, is proposed. By using hexagonal sampling, aliasing artifacts are moved to regions where, due to the nature of the anatomy, aliasing is inconsequential. This can be used to either reduce scan time while maintaining spatial resolution or reduce residual errors in speedup techniques like UNFOLD and k-t BLAST/SENSE, which undersample k-space and unwrap fold-over artifacts during reconstruction. Computer simulations as well as phantom and volunteer studies were used to validate the theory. A simplified reconstruction algorithm for hexagonally sampled and subsampled k-space data was also used. RESULTS: A reduction in sampling density of 13.4% and 25% in each hexagonally sampled dimension was achieved for spherical and conical geometries without aliasing or reduction in spatial resolution. Optimal subsampling schemes that can be utilized by UNFOLD and k-t BLAST/SENSE were derived using hexagonal subsampling, which resulted in maximal, isotropic dispersal of the aliases. In combination with UNFOLD, ANTHEM was shown to move residual aliasing artifacts to the corners of the field of view, yielding reduced artifacts in CINE reconstructions. CONCLUSIONS: ANTHEM was successful in reducing acquisition time in conventional MRI and in reducing errors in UNFOLD imaging.  相似文献   

20.
The magnetization response of hyperpolarized 3He gas to a steady-state free precession (SSFP) sequence was simulated using matrix product operators. The simulations included the effects of flip angle (alpha), sequence timings, resonant frequency, gas diffusion coefficient, imaging gradients, T1 and T2. Experiments performed at 1.5 T, on gas phantoms and with healthy human subjects, confirm the predicted theory, and indicate increased SNR with SSFP through use of higher flip angles when compared to optimized spoiled gradient echo (SPGR). Simulations and experiments show some compromise to the SNR and some point spread function broadening at high alpha due to the incomplete refocusing of transverse magnetization, caused by diffusion dephasing from the readout gradient. Mixing of gas polarization levels by diffusion between slices is also identified as a source of signal loss in SSFP at higher alpha through incomplete refocusing. Nevertheless, in the sample experiments, a SSFP sequence with an optimized flip angle of alpha=20 degrees, and 128 sequential phase encoding views, showed a higher SNR when compared to SPGR (alpha=7.2 degrees) with the same bandwidth. Some of the gas sample experiments demonstrated a transient signal response that deviates from theory in the initial phase. This was identified as being caused by radiation damping interactions between the large initial transverse magnetization and the high quality factor (Q=250) birdcage resonator. In 3He NMR experiments, performed without imaging gradients, diffusion dephasing can be mitigated, and the effective T2 is relatively long (1 s). Under these circumstances the SSFP sequence behaves like a CPMG sequence with sinalpha/2 weighting of SNR. Experiments and simulations were also performed to characterize the off-resonance behaviour of the SSFP HP 3He signal. Characteristic banding artifacts due to off-resonance harmonic beating were observed in some of the in vivo SSFP images, for instance in axial slices close to the diaphragm where B0 inhomogeneity is highest. Despite these artifacts, a higher SNR was observed with SSFP in vivo when compared to the SPGR sequence. The trends predicted by theory of increasing SSFP SNR with increasing flip angle were observed in the range alpha=10-20 degrees without compromise to image quality through blurring caused by excessive k-space filtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号