首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nano-sized -Fe2O3 particles coated with polar organic molecules have been studied using the Mössbauer spectroscopy method. The -Fe2O3 nanoparticles were prepared by the microemulsion method. The average particle size of the Fe2O3 particles is about 24 Å. Because the particle size is so small that the Mössbauer spectra of the -Fe2O3 samples only consist of a quadrupole-split central line. It was proved that the Isomer Shifts (DIS) and the Quadrupole Splitting (DQS) changed as the refluxing time prolongs and the refluxing temperature increases during the preparation of the Fe2O3 nanoparticles, which implied an enhancement of the surface electrofield gradient formed by the surface coated polar molecules during the refluxing process.  相似文献   

2.
The binary system LiNbO3-Fe2O3 has been studied by Mössbauer spectroscopy in the concentration range up to 24 mol% Fe2O3. For Fe2O3 concentrations up to 6 mol% iron is incorporated into the matrix of LiNbO3 as Fe2+ and Fe3+, whereby the Fe2+ content decreases with increasing Fe2O3 concentration. Samples containing 9 and 11 mol% Fe2O3 showed only the Fe3+ valence state. There were no indications of any considerable formation of superparamagnetic Fe2O3 clusters up to 11 mol% Fe2O3. This is in agreement with the X-ray and DTA investigations of Takei and Katsumata (1982) who found that a solid solution exists between 0 and 11 mol% Fe2O3. Above 11 mol% the appearance of magnetically split sextets in the Mössbauer spectra indicated the formation of a second α-Fe2O3 phase. The isomer shift, which reflects the electron density at the Fe nucleus, measured as a function of the Fe2O3 concentration showed two steps, one at 6 mol% Fe2O3 (the turning point of the CH axis parameter (Takei et al. 1982) and one at 11 mol% Fe2O3 (phase boundary). These steps were tentatively related to abrupt changes in the spontaneous polarization.  相似文献   

3.
Complete replacement of copper by iron in RBa2Cu3O7 leads to RBa2Fe3O8 (R=Y, rare earth). Mössbauer spectroscopy measurements of57Fe and151Eu in RBa2Fe3O8 (R=Y, Eu, Ho, Er) at temperatures 4.2–800 K have been performed. Some of the spectra reveal two inequivalent iron sites, probably corresponding to iron in the Fe(2) site (fivefold oxygen coordination) and in the Fe(1) site (octahedral oxygen coordination). In all compounds the iron moments order antiferromagnetically at the same Néel temperatureT N720 K. The151Eu Mössbauer spectra of EuBa2Fe3O8 show that the Eu ion is trivalent and exposed to a small exchange field from the iron sublattices.  相似文献   

4.
Investigation by Mössbauer spectroscopy of non-aggregated nanometric -Fe2O3 particles dispersed in polymer is reported. Magnetic interactions between the particles were controlled by varying the particle concentration in the polymer. The results show that over the investigated range, the interactions make the relaxation time shorter. Infield experiments show spin canting which increases with decreasing particle size.  相似文献   

5.
《Physica B+C》1979,96(1):103-110
A slowly cooled sample of the ferrimagnetic spinel MgFe2O4 has been studied with 57Fe Mössbauer spectroscopy over a wide temperature range both with and without high magnetic fields. The observed temperature dependence of the A and B site hyperfine parameters is discussed. Conclusions about the spin structure, the magnetic exchange interactions and the supertransferred hyperfine fields are presented.  相似文献   

6.
Mössbauer spectra of carefully reduced carbon-supported iron catalysts show superparamagnetic -Fe at 80 K. The results indicate that the particle size depends on the reduction temperature. Effects of evacuation and CO chemisorption are discussed.  相似文献   

7.
8.
Guided by the occupancies and iron magnetic moments μ3, 57Fe Mössbauer parameters of Y2Fe14B at 250K, and in turn for other temperatures, of the sublattices of iron were deduced. Plots of μ(T) in reduced coordinates, through the established correlation between hyperfine field Hn and μ, show that the corresponding state of different iron sites is different and all experimental points fall below Brillouin function. The relation between exchange integral deviation parameter Δ and standard deviation of Fe-Fe interatomic distances S is linear, indicating electrostatic nature of exchange interactions between spins in neighboring atoms. It is inclined to the view that fluctuations of exchange integral is responsible for low Tc of R2Fe14B.  相似文献   

9.
10.
-FeOOH was precipitated from a chloride solution. Mössbauer spectra were taken at room temperature (RT) and at 4.2 K in zero field and in external magnetic fields. Samples aged for successively longer time periods were studied. They contain -FeOOH and -Fe2O3, the Mössbauer spectra of which show superparamagnetic behavior. The transformation into -Fe2O3 is already induced by aging in the mother solution at 100 C. A final heat treatment at 350 C leads to the complete transformation into -Fe2O3 and to an increase of the crystallite size.  相似文献   

11.
Materials consisting of nanometer-sized magnetic particles are currently the subject of intensive research activities. Especially, much attention has been paid to their promising features for microwave magnetic properties. Well dispersed Fe3O4 nanoparticles of 30 nm have been synthesized by oxidization method with NaNO2, and the microwave magnetic properties of the composites have been studied. The real and imaginary part of relative permittivity remained low and nearly constant in the region of 0.1–18 GHz, respectively. As a result, the resin composites having a thickness of 2.0–3.2 mm, and containing 20 vol% Fe3O4 in the form of nanoparticles with an average diameter of 30 nm, exhibited excellent electromagnetic wave absorption properties in the frequency range of 4.5–12.0 GHz.  相似文献   

12.
Mössbauer spectra of LiNbO3: Fe(III)-monocrystals in external magnetic fields of 0.3–7T with various configurations of the -direction, c-axis of the crystal, and the magnetic field direction are interpreted by means of a spin Hamiltonian. A consistent set of hyperfine and crystal-field parameters could be least squares fitted for all spectra. Arguments that Fe(III) substitutes Nb(V) are given.Work partly performed in ICEx/UFMG, Depto. de Fisica, Belo Horizonte, Brasil  相似文献   

13.
The present work reports results of the 57Fe Mössbauer measurements on AgFeO2 powder sample recorded at various temperatures including the points of both magnetic phase transitions. The 57Fe Mössbauer spectra of AgFeO2 measured in the paramagnetic range (T > T N1) consist of one quadrupole doublet with rather high quadrupole splitting of Δ300K = 0.66 ± 0.01 mm/s for Fe3+ ions. In order to predict the sign of electric field gradient (EFG) at 57Fe nuclei, we calculated the lattice contribution to the electric field gradient (EFG) at 57Fe nuclei, which emphasized the importance of the dipolar contributions, with resultant oxygen polarizabilities in the range of α O = 0.83 Å3, in agreement with the results obtained previously for other delafossite-like oxides. In the temperature range of T N2 < T < T N1, Mössbauer spectra gave clear evidence for the existence of a distribution of the hyperfine magnetic fields H hf at 57Fe nuclei. We present the results of a model fitting of the spectra based on an assumption of the cycloid magnetic structure of AgFeO2 at T < T N2. The obtained data were analysed in comparison with published data on Mössbauer studies of oxide multiferroics.  相似文献   

14.
A series ofCuFe alloys containing 5, 10 and 16 at% Fe has been prepared using standard ribbon spinning techniques. It is found that samples containing significant fractions ( 5%) of Fe in the form of r-Fe can be obtained readily on quenching from the (r + liquid) phase, applied field spectra (0–5.2 T) on antiferromagnetic r-Fe at 4. 2 K indicate that the anisotropy energy is small and that spins tilt from the minimum energy configuration (spin axes perpendicular to Bappl) for Bappl 2.5T.  相似文献   

15.
With the advent of Fe–As based superconductivity it has become important to study how superconductivity manifests itself in details of 57Fe Mössbauer spectroscopy of conventional, Fe-bearing superconductors. To this end, the iron-based superconductor Lu2Fe3Si5 has been studied by 57Fe Mössbauer spectroscopy over the temperature range from 4.4 K to room temperature with particular attention to the region close to the superconducting transition temperature (Tc=6.1 K). Consistent with the two crystallographic sites for Fe in this structure, the observed spectra appear to have a pattern consisting of two doublets over the whole temperature range. The value of Debye temperature was estimated from temperature dependence of the isomer shift and the total spectral area and compared with the specific heat capacity data. Neither abnormal behavior of the hyperfine parameters at or near Tc, nor phonon softening were observed.  相似文献   

16.
The Fe‐doped system Cu0.9Ge0.9Fe0.2O3 has been investigated by means of X‐ray diffractometry, Mössbauer spectroscopy and superconducting quantum interference device. The structure of this system is orthorhombic and the lattice constants are a=4.784 Å, b=8.472 Å and c=2.904 Å, respectively. Magnetic measurements confirm that the spin‐Peierls transition appears in our sample at about 12 K, which is near to the spin‐Peierls transition temperature (T sp) 14 K of pure CuGeO3 system. The Mössbauer spectrum shows the superposition of two Zeeman sextets and a broad central line due to Fe3+ ions from room temperature to 4.2 K. The Mössbauer parameters show a discontinuity near T sp. The jump of the magnetic hyperfine field at temperatures lower than T sp means increasing of the superexchange interaction among the magnetic ions. The jump of the quadrupole splitting and the isomer shift values could be interpreted as due to decrement in symmetry of lattice sites and spontaneous thermal contraction.  相似文献   

17.
Nd60Fe30Al10 alloys were rapidly quenched by the melt-spinning technique with different wheel surface speeds ranging from 5 to 30 m/s. The microstructure and the magnetic properties were strongly dependent on the quenching rate. A high quenching rate led to an amorphous structure with a low coercivity at room temperature, while a mixture of amorphous and crystalline phases was found after melt-spinning at 5 m/s, which exhibited hard magnetic properties at room temperature. For both the ribbons melt-spun at 5 and 30 m/s respectively, coercivity increased with decreasing temperature and reached a maximum at around 50 K. Maximum magnetization at 10 T increased dramatically at low temperature. Our magnetic study has shown that the presence of crystalline Nd was responsible for the increase of magnetization and the decrease of coercivity, as Nd became magnetically ordered at low temperatures. The Mössbauer study has shown that the magnetic microstructures of melt-spun ribbons were not uniform, as the spectra needed to be fitted by magnetic and non-magnetic components.  相似文献   

18.
The reaction kinetics of the hydrothermal transformation -FeOOH-Fe2O3 was studied by means of Mössbauer spectroscopy. From the reaction isotherms, a monomolecular, first order reaction was found to characterise the hydrothermal transformation of alpha oxihydroxide to the alpha iron oxide. The rate constant as well as the activation energy of this process were determined. No intermediate phases were identified in the hydrothermal samples. The thermodynamic properties of the hydrothermal system -FeOOH-Fe2O3 in correlation with Mössbauer spectroscopy data are discussed.  相似文献   

19.
The structure of LiNbO3-type FeTiO3 and the oxidation state of Fe have been investigated using X-ray diffraction and Mössbauer spectroscopy in the diamond anvil cell up to 18 GPa at room temperature. A structural phase transition is observed at 15.7 GPa from LiNbO3-type to perovskite-type, accompanied by a volume collapse of 1.5%. LiNbO3-type FeTiO3, which is shown to contain only ferrous iron up to this pressure, and no charge transfer is observed. In addition to the c/a axial ratio that has been used to distinguish between ilmenite and LiNbO3-type FeTiO3, the hyperfine parameters (isomer shift and quadrupole splitting) provide an efficient way to discriminate between these two phases.  相似文献   

20.
Magnetite nanoparticles of 10 nm average size were synthesized by ultrasonic waves from the chemical reaction and precipitation of ferrous and ferric iron chloride (FeCl3 · 6H2O y FeCl2 · 4H2O) in a basic medium. The formation and the incorporation of the magnetite in PMMA were followed by XRD and Mössbauer Spectroscopy. These magnetite nanoparticles were subsequently incorporated into the polymer by ultrasonic waves in order to obtain the final sample of 5 % weight Fe3O4 into the polymethylmethacrylate (PMMA). Both samples Fe3O4 nanoparticles and 5 % Fe3O4/PMMA nanocomposite, were studied by Mössbauer spectroscopy in the temperature range of 300 K–77 K. In the case of room temperature, the Mössbauer spectrum of the Fe3O4 nanoparticles sample was fitted with two magnetic histograms, one corresponding to the tetrahedral sites (Fe3?+?) and the other to the octahedral sites (Fe3?+? and Fe2?+?), while the 5 % Fe3O4/PMMA sample was fitted with two histograms as before and a singlet subspectrum related to a superparamagnetic behavior, caused by the dispersion of the nanoparticles into the polymer. The 77 K Mössabuer spectra for both samples were fitted with five magnetic subspectra similar to the bulk magnetite and for the 5 % Fe3O4/PMMA sample it was needed to add also a superparamagnetic singlet. Additionally, a study of the Verwey transition has been done and it was observed a different behavior compared with that of bulk magnetite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号