首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A passive cavitation detector (PCD) identifies cavitation events by sensing acoustic emissions generated by the collapse of bubbles. In this work, a dual passive cavitation detector (dual PCD), consisting of a pair of orthogonal confocal receivers, is described for use in shock wave lithotripsy. Cavitation events are detected by both receivers and can be localized to within 5 mm by the nature of the small intersecting volume of the focal areas of the two receivers in association with a coincidence detection algorithm. A calibration technique, based on the impulse response of the transducer, was employed to estimate radiated pressures at collapse near the bubble. Results are presented for the in vitro cavitation fields of both a clinical and a research electrohydraulic lithotripter. The measured lifetime of the primary growth-and-collapse of the cavitation bubbles increased from 180 to 420 microseconds as the power setting was increased from 12 to 24 kV. The measured lifetime compared well with calculations based on the Gilmore-Akulichev formulation for bubble dynamics. The radiated acoustic pressure 10 mm from the collapsing cavitation bubble was measured to vary from 4 to 16 MPa with increasing power setting; although the trends agreed with calculations, the predicted values were four times larger than measured values. The axial length of the cavitation field correlated well with the 6-dB region of the acoustic field. However, the width of the cavitation field (10 mm) was significantly narrower than the acoustic field (25 mm) as bubbles appeared to be drawn to the acoustic axis during the collapse. The dual PCD also detected signals from "rebounds," secondary and tertiary growth-and-collapse cycles. The measured rebound time did not agree with calculations from the single-bubble model. The rebounds could be fitted to a Rayleigh collapse model by considering the entire bubble cloud as an effective single bubble. The results from the dual PCD agreed well with images from high-speed photography. The results indicate that single-bubble theory is sufficient to model lithotripsy cavitation dynamics up to time of the main collapse, but that upon collapse bubble cloud dynamics becomes important.  相似文献   

2.
沈壮志 《物理学报》2015,64(12):124702-124702
以水为工作介质, 考虑了液体的可压缩性, 研究了驻波声场中空化泡的运动特性, 模拟了驻波场中各位置处空化泡的运动状态以及相关参数对各位置处空化泡在主Bjerknes力作用下运动方向的影响. 结果表明: 驻波声场中, 空化泡的运动状态分为三个区域, 即在声压波腹附近空化泡做稳态空化, 在偏离波腹处空化泡做瞬态空化, 在声压波节附近, 空化泡在主Bjerknes 力作用下, 一直向声压波节处移动, 显示不发生空化现象; 驻波场中声压幅值增加有利于空化的发生, 但声压幅值增加到一定上限时, 压力波腹区域将排斥空化泡, 并驱赶空化泡向压力波节移动, 不利于空化现象的发生; 当声频率小于初始空化泡的共振频率时, 声频率越高, 由于主Bjerknes 力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生, 尤其是驻波场液面的高度不应是声波波长的1/4; 当声频率一定时, 空化泡初始半径越大越有利于空化现象的发生, 但当空化泡的初始半径超过声频率的共振半径时, 由于主Bjerknes力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生.  相似文献   

3.
球状泡群内气泡的耦合振动   总被引:1,自引:0,他引:1       下载免费PDF全文
王成会  莫润阳  胡静  陈时 《物理学报》2015,64(23):234301-234301
振动气泡形成辐射场影响其他气泡的运动, 故多气泡体系中气泡处于耦合振动状态. 本文在气泡群振动模型的基础上, 考虑气泡间耦合振动的影响, 得到了均匀球状泡群内振动气泡的动力学方程, 以此为基础分析了气泡的非线性声响应特征. 气泡间的耦合振动增加了系统对每个气泡的约束, 降低了气泡的自然共振频率, 增强了气泡的非线性声响应. 随着气泡数密度的增加, 振动气泡受到的抑制增强; 增加液体静压力同样可抑制泡群内气泡的振动, 且存在静压力敏感区(1–2 atm, 1 atm=1.01325×105 Pa); 驱动声波对气泡振动影响很大, 随着声波频率的增加, 能够形成空化影响的气泡尺度范围变窄. 在同样的声条件、泡群尺寸以及气泡内外环境下, 初始半径小于5 μm 的气泡具有较强的声响应. 气泡耦合振动会削弱单个气泡的空化影响, 但可延长多气泡系统空化泡崩溃发生的时间间隔和增大作用范围, 整体空化效应增强.  相似文献   

4.
Cavitation damage is a micro, high-speed, multi-phase complex phenomenon caused by the near-wall bubble group collapse. The current numerical simulation method of cavitation mainly focuses on the collapse impact of a single cavitation bubble. The large-scale simulation of the cavitation bubble group collapse is difficult to perform and has not been studied, to the best of our knowledge. In this study, the equivalent model of impact loading of acoustic bubble collapse micro-jets is proposed to study the cavitation erosion damage of materials. Based on the theory of the micro-jet and the water hammer effect of the liquid–solid impact, an equivalent model of impact loading of a single acoustic bubble collapse micro-jet is established under the principle of deformation equivalence. Since the acoustic bubbles can be considered uniformly distributed in a small enough area, an equivalent model of impact loading of multiple acoustic bubble collapse micro-jets in a micro-segment can be derived based on the equivalent results of impact loading of a single acoustic bubble collapse micro-jet. In fact, the equivalent methods of cavitation damage loading for single and multiple near-wall acoustic bubble collapse micro-jets are formed. The verification results show the law of cavitation deformation of concrete using equivalent loading is consistent with that of a micro-jet simulation, and the average relative errors and the mean square errors are insignificant. The equivalent method of impact loading proposed in this paper has high accuracy and can greatly improve the calculation efficiency, which provides technical support for numerical simulation of concrete cavitation.  相似文献   

5.
水下强声波脉冲负压的产生和空化气泡运动   总被引:1,自引:0,他引:1       下载免费PDF全文
张军  曾新吾  陈聃  张振福 《物理学报》2012,61(18):184302-184302
首先利用高速摄影和压力传感器测量的方法, 对曲面反射式水下强声波脉冲的传播和聚焦过程进行了实验研究.实验研究发现, 椭球面反射罩在起到汇聚声能的作用的同时也将使得强声波脉冲在传播过程中形成负压区, 并由此而引发近场声传播通道上空化气泡群的产生. 在实验结果的基础上, 进一步利用基于Kirchhoff衍射定理的声传播模型和大振幅条件下的QX气泡运动方程, 对强声波脉冲负压区的形成原因及空化气泡的运动过程进行了数值计算和分析. 研究结果表明, 在焦前区, 源于反射罩内表面的"尾波"和出口处的"边缘波"在传播过程中将形成反射波中的负压区; 在焦后区, 源于反射罩顶点的"中心波"在传播过程中将形成反射波中的负压区. 在反射波作用下, 空化气泡体现出了"正压区受压缩并振荡, 负压区膨胀"的运动特点. 在反射波之后, 空化气泡将出现成长、坍缩和回弹等典型的物理过程. 研究结果对曲面反射式水下强声波传播物理规律的认识具有实际意义.  相似文献   

6.
声场中水力空化泡的动力学特性   总被引:4,自引:0,他引:4       下载免费PDF全文
沈壮志  林书玉 《物理学报》2011,60(8):84302-084302
以水为工作介质,考虑了液体黏性、表面张力、可压缩性及湍流作用等情况,对文丘里管反应器中空化泡在声场作用下的动力学行为特性进行了数值研究.分析了超声波频率、声压及喉径比对空化泡运动特性以及空化泡崩溃时所形成泡温以及压力脉冲的影响.结果表明,超声将水力空化泡运动调制成稳态空化,有利于增强空化效果. 关键词: 超声波 水力空化 湍流 气泡动力学  相似文献   

7.
8.
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.  相似文献   

9.
We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes.  相似文献   

10.
Nonlinear dynamics of bubbles in liquid in the presence of the resonance and noise acoustic fields is analyzed. The effect of fluctuations associated with the random field component is found to be most pronounced in the vicinity of the bifurcation values of the field amplitude and detuning, these values corresponding to changes in the number of stable oscillatory states of a bubble. The radiation spectrum of a single bubble in the vicinity of the fundamental resonance is determined. In the framework of the proposed model, a comparison of this spectrum with the real spectrum of acoustic radiation caused by cavitation is performed.  相似文献   

11.
This communication is devoted to theoretical analysis of the dynamics of a solitary cavitation bubble pulsating in a compressible viscous liquid under the action of a nonuniform acoustic field. The system of two nonlinear ordinary second-order differential equations is integrated numerically. In the range of acoustic field parameters corresponding to the principal resonance region, the bubble performs large-scale spatial oscillations. It is shown that in a very small range of initial radii, the bubble stops its oscillatory motion due to stochastic pulsations and is expelled into the region of the acoustic-pressure block. Therefore, stochastic pulsations of the bubble radically change the form of the solution to the system of the above-mentioned equations.  相似文献   

12.
水中激光击穿空泡的高速摄影研究   总被引:3,自引:1,他引:2  
为了分析激光击穿液体介质过程中的等离子腔体、空泡脉动、近/远场声波特性等综合效应,将高速摄影技术应用于水下激光击穿研究.观察到了激光击穿形成的等离子体闪光、空泡脉动及溃灭过程,通过对所得照片的分析,得到了激光空泡生长的规律,实验结果与已有的水下空泡理论计算及采用光散射、压力传感器测量结果吻合较好,证明了高速摄影技术在水下激光击穿产生空泡特性研究中的重要作用.  相似文献   

13.
The bubble cavitation along a solid wall is investigated with a three-dimensional model based on the indirect boundary element method. Kinetic energy and Kelvin impulse are calculated in order to quantify the strength of cavitation. The influences of acoustic wave amplitude and frequency and liquid properties on the strength of cavitation are investigated. This study was carried out in order to better understand the relation between microscale processes and macroscale parameters in a sonochemical reactor used for impregnation of fabrics with nanoparticles.  相似文献   

14.
Bubble clusters in hydrodynamic cavitation, acoustic cavitation and hydrodynamic-acoustic cavitation (HAC) are investigated via high-speed photography. By introducing a cavitation state variable, a method for cavitation characterization is proposed. The periodic characteristics and intensity distributions of hydrodynamic cavitation, acoustic cavitation and HAC are quantitatively analyzed using this method. It is found that the range of HAC is evidently widened and the strength of HAC is significantly enhanced compared with hydrodynamic cavitation or acoustic cavitation. Furthermore, we developed a preliminary physical model describing the dynamics of a cavitation bubble in HAC and proposed a mechanism to explain the enhancement of the intensity in HAC.  相似文献   

15.
To address difficulties in treating large volumes of liquid metal with ultrasound, a fundamental study of acoustic cavitation in liquid aluminium, expressed in an experimentally validated numerical model, is presented in this paper. To improve the understanding of the cavitation process, a non-linear acoustic model is validated against reference water pressure measurements from acoustic waves produced by an immersed horn. A high-order method is used to discretize the wave equation in both space and time. These discretized equations are coupled to the Rayleigh-Plesset equation using two different time scales to couple the bubble and flow scales, resulting in a stable, fast, and reasonably accurate method for the prediction of acoustic pressures in cavitating liquids. This method is then applied to the context of treatment of liquid aluminium, where it predicts that the most intense cavitation activity is localised below the vibrating horn and estimates the acoustic decay below the sonotrode with reasonable qualitative agreement with experimental data.  相似文献   

16.
The use of ultrasonic energy for washing of textiles has been tried several times without achieving practical development. In fact, the softness of the fibres makes the cavitation to produce small erosion effect and the reticulate structure of the fabric favours the formation of air bubble layers which obstruct wave penetration. In addition, a high proportion of water with respect to the wash load and a certain water degassing is required to assure efficiency and homogeneity in the wash performance. Such requirements have hindered the commercial development of the ultrasonic washing machines for domestic purposes. For specific industrial applications, a great part of these limitations may be overcome. This article deals with a new process in which the fabric is exposed to the ultrasonic field in a flat format. Such process has been implemented at laboratory and at semi-industrial stage by using specially designed power ultrasonic transducers with rectangular plate radiators. The cleaning effect is produced by the intense cavitation field generated by the plate radiator within a thin layer of liquid where the fabric is introduced. The homogeneity of such effect is achieved by the successive exposure of all the fabric areas to the intense acoustic field. In this paper the structure and performance of the developed system are shown.  相似文献   

17.
The cavitation field generated by an ultrasonic horn at low frequency and high power is known to self-organize into a conical bubble structure. The physical mechanism at the origin of this bubble structure is investigated using numerical simulations and acoustic pressure measurements. The thin bubbly layer lying at horn surface is shown to act as a nonlinear thickness resonator that amplifies acoustic pressure and distorts acoustic waveform. This mechanism explains the self-stabilization of the conical bubble structure as well as the generation of shock wave and the focusing at very short distance.  相似文献   

18.
When a gas bubble in a liquid interacts with an acoustic wave near a solid surface, the bubble first expands and then collapses. In this paper, a mathematical framework combining the Gilmore model and the method of characteristics is presented to model the shock wave emitted at the end of the bubble collapse. It allows to describe the liquid velocity at the shock front as a function of the radial distance to the bubble center in the case of spherical bubble collapse. Numerical calculations of the liquid velocity at the shock front have shown that this velocity increases with the acoustic amplitude and goes through a maximum as a function of the initial bubble radius. Calculations for different gas state equations inside the bubble show that the Van der Waals law predicts a slightly higher liquid velocity at the shock front than when considering a perfect gas law. Finally, decreasing the value of the surface tension at the bubble/liquid interface results in an increase of the liquid velocity at the shock front. Our calculations indicate that the strength of the shock waves emitted upon spherical bubble collapse can cause delamination of typical device structures used in microelectronics.  相似文献   

19.
The removal of the adsorbed oil droplet is critical to deoiling treatment of oil-bearing solid waste. Ultrasonic cavitation is regarded as an extremely useful method to assist the oil droplets desorption in the deoiling treatment. In this paper, the effects of cavitation micro-jets on the oil droplets desorption were studied. The adsorbed states of oil droplets in the oil-contaminated sand were investigated using a microscope. Three representative absorbed states of the oil droplets can be summarized as: (1) the individual oil droplet adsorbed on the particle surface (2) the clustered oil droplets adsorbed on the particle surface; (3) the oil droplet adsorbed in a gap between particles. The micro-jet generation during the bubble collapse near a rigid wall under different acoustic pressure amplitudes at an ultrasonic frequency of 20 kHz was investigated numerically. The desorption processes of the oil droplets at the three representative absorbed states under micro-jets were also simulated subsequently. The results showed that the acoustic pressure has a great influence on the velocity of micro-jet, and the initial diameter of cavitation bubbles is significant for the cross-sectional area of micro-jets. The wall jet caused by a micro-jet impacting on the solid wall is the most important factor for the removal of the absorbed oil droplets. The oil droplet is broken by the jet impinging, and then it breaks away from the solid wall due to the shear force generated by the wall jet. In addition to a higher sound pressure, the cavitation bubble at a larger initial diameter is more important for the desorption of the clustered oil droplets. Conversely, the micro-jet generated by the cavitation bubble at a smaller initial diameter (0.1 mm) is more appropriate for the desorption of the oil droplet in a narrow or sharp-angled gap.  相似文献   

20.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号