首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper we investigate a general class of linear viscoelastic models whose creep and relaxation memory functions are expressed in Laplace domain by suitable ratios of modified Bessel functions of contiguous order. In time domain these functions are shown to be expressed by Dirichlet series (that is infinite Prony series). It follows that the corresponding creep compliance and relaxation modulus turn out to be characterized by infinite discrete spectra of retardation and relaxation time respectively. As a matter of fact, we get a class of viscoelastic models depending on a real parameter \(\nu > -1\). Such models exhibit rheological properties akin to those of a fractional Maxwell model (of order 1/2) for short times and of a standard Maxwell model for long times.  相似文献   

2.
Summary Experimental data have been obtained on the creep compliance and the relaxation modulus of two epoxy resins in their transition regions. These tests were combined with birefringence measurements to follow the changes in bond orientation of the polymers as the strain or stress varies. Experimental data on the stress- and strain-optical coefficients are presented for both creep and relaxation experiments. It was proved that the validity of the time-temperature superposition principle can be extended to these two coefficients characterizing the optical viscoelastic properties of the two epoxy resins.Master curves ofF (t/k) versus log (t/k) were constructed, whereF (t/k) represents in turn one of the quantities studied namely creep compliance, relaxation modulus and stress- or strain-optical coefficients. The creep and relaxation time factorsk, corresponding to the creep and relaxation curves at the various temperatures, are plotted against the inverse of the absolute temperatureT. The approximate equality of the time factors for mechanical and separately for optical creep and relaxation was established from these plots. This equality proves that creepD-functions and relaxationE-functions are the reciprocals of one another at any time and that the variation of birefringence with time follows the same law in the respective creep and relaxation tests.
Zusammenfassung Es wurden experimentelle Werte der Kriech-Compliance und der Relaxationsmoduln zweier Epoxydharze in ihren Transformationsbereichen festgestellt. Diese Prüfungen wurden mit Doppelbrechungsmessungen kombiniert, um die Änderung der Orientierung in den Polymeren bei Änderung von Spannung und Verformung zu ermitteln. Die experimentellen Ergebnisse für die optischen Koeffizienten sowohl bei verschiedenen Zug- wie Verformungswerten wurden sowohl für das Kriechen wie für die Relaxatíon untersucht. Damit ließ sich prüfen, inwieweit die Zeit-Temperatur-Superposition auf diese beiden Koeffizienten angewendet werden kann, die die optischen visko-elastischen Eigenschaften der zwei Epoxydharze charakterisieren.
  相似文献   

3.
The main goal of the paper is to compare predictive power of relaxation spectra found by different methods of calculations. The experimental data were obtained for a new family of propylene random copolymers with 1-pentene as a comonomer. The results of measurements include flow curves, viscoelastic properties, creep curves and rubbery elasticity of copolymer melts. Different relaxation spectra were calculated using independent methods based on different ideas. It lead to various distributions of relaxation times and their “weights”. However, all of them correctly describe the frequency dependencies of dynamic modulus. Besides, calculated spectra were used for finding integral characteristics of viscoelastic behaviour of a material (Newtonian viscosity, the normal stress coefficient, steady-state compliance). In this sense all approaches are equivalent, though it appears impossible to estimate instantaneous modulus. The most crucial arguments in estimating the results of different approaches is calculating the other viscoelastic function and predicting behaviour of a material in various deformation modes. It is the relaxation and creep functions. The results of relaxation curve calculations show that all methods used give rather similar results in the central part of the curves, but the relaxation curves begin to diverge when approaching the high-time (low-frequency) boundary of the relaxation curves. The distributions of retardation times calculated through different approaches also appear very different. Meanwhile, predictions of the creep curves based on these different retardation spectra are rather close to each other and coincide with the experimental points in the wide time range. Relatively slight divergences are observed close to the upper boundary of the experimental window. All these results support the conclusion about a rather free choice of the relaxation time spectrum in fitting experimental data and predicting viscoelastic behaviour of a material in different deformation modes. Received: 15 March 2000 Accepted: 18 September 2000  相似文献   

4.
It has been long observed that cumbersome parameters are required for the traditional viscoelastic models to describe complex rheological behaviors. Inspired by the relationship between normal and anomalous diffusions, this paper tentatively employs t α to replace t, called as the scaling transformation, in the traditional creep compliance and relaxation modulus. With this methodology, the relaxation modulus is found to agree with the well-known Kohlrausch-Williams-Watts (KWW) stretched exponential function. The fitting results confirm that the proposed models accurately characterize rheological behaviors only with one more parameter α. Moreover, it is noted that the present formulations are directly related to the fractal derivative viscoelastic models and the index α is actually the order of the fractal derivative.  相似文献   

5.
Current nanoindentation measurement techniques normally assume that one material function (such as the Poisson's function) is a constant, and measures just one material function, such as the creep compliance in shear. For materials with significant viscoelastic effects and unknown viscoelastic functions, assuming a constant for one material function is not satisfactory. Accurate measurements require simultaneously determining two independent material functions. This paper provides a method to use nanoindentation to measure both bulk and shear relaxation functions. Two different nanoindenter tips, namely Berkovich and spherical indenters, are used for nanoindentation on polymers. Any two independent viscoelastic functions, such as bulk relaxation modulus and shear relaxation modulus, have different representations in the load–displacement curves obtained with these two indenters so that the two independent viscoelastic functions can be separated and determined. Two polymers, poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) were used in nanoindentation. Nanoindentation measurements were conducted on PVAc above glass transition temperature (Tg) and on PMMA below Tg. Both shear and bulk relaxation functions determined from nanoindentation were found in a reasonably good agreement with data obtained from conventional tests, providing validation of the method presented. The new method can be applied in measurements of two independent viscoelastic functions at sub-micron scale of very small amounts of materials such as polymeric films on a substrate, heterogeneous materials such as bones, tissues, and nanocomposites.  相似文献   

6.
Makris  Nicos 《Meccanica》2019,54(1-2):19-31

Motivated from the need to convert time-dependent rheometry data into complex frequency response functions, this paper studies the frequency response function of the creep compliance that is coined the complex creep function. While for any physically realizable viscoelastic model the Fourier transform of the creep compliance diverges in the classical sense, the paper shows that the complex creep function, in spite of exhibiting strong singularities, it can be constructed with the calculus of generalized functions. The mathematical expressions of the real and imaginary parts of the Fourier transform of the creep compliance of simple rheological networks derived in this paper are shown to be Hilbert pairs; therefore, returning back in the time domain a causal creep compliance. The paper proceeds by showing how a measured creep compliance of any solid-like or fluid-like viscoelastic material can be decomposed into elementary functions with parameters that can be identified from best fit of experimental data. The proposed technique allows for a direct determination of the sufficient parameters needed to approximate an experimentally measured creep compliance and the presented mathematical formulae offers dependable expressions of the corresponding complex-frequency response functions.

  相似文献   

7.
纤维沥青混凝土FRA(Fiber reinforced asphalt concrete)的力学行为取决于沥青混合料和纤维的物理属性及几何特征。通过三参数固体模型,考虑纤维的几何特性,构造了一种预测FRA黏弹性行为模型,推导出该模型的本构方程、蠕变柔量和松弛模量表达式。采用该模型研究了纤维体积分、比半径和弹性模量等对FRA松弛模量和蠕变柔量的影响。结果表明,纤维掺入量和比半径对FRA的松弛模量和蠕变柔量影响较大,而弹性模量影响较小。通过试验,验证了FRA预测模型具有较高的精度。在研究试验范围内,SMA-13沥青混凝土的聚丙烯腈纤维(PAN)最佳掺入量和长径比分别为0.3%~0.4%和600~900。  相似文献   

8.
In 1958, Jeffreys (Geophys J?R Astron Soc 1:92–95) proposed a power law of creep, generalizing the logarithmic law earlier introduced by Lomnitz, to broaden the geophysical applications to fluid-like materials including igneous rocks. This generalized law, however, can be applied also to solid-like viscoelastic materials. We revisit the Jeffreys–Lomnitz law of creep by allowing its power law exponent α, usually limited to the range 0?≤?α?≤?1 to all negative values. This is consistent with the linear theory of viscoelasticity because the creep function still remains a Bernstein function, that is positive with a completely monotone derivative, with a related spectrum of retardation times. The complete range α?≤?1 yields a continuous transition from a Hooke elastic solid with no creep $\left(\alpha \,\to\, -\infty\right)$ to a Maxwell fluid with linear creep $\left(\alpha \,=\,1\right)$ passing through the Lomnitz viscoelastic body with logarithmic creep $\left(\alpha\, =0\right)$ , which separates solid-like from fluid-like behaviors. Furthermore, we numerically compute the relaxation modulus and provide the analytical expression of the spectrum of retardation times corresponding to the Jeffreys–Lomnitz creep law extended to all α?≤?1.  相似文献   

9.
A convenient method is described for obtaining a discrete stress relaxation spectrum from linear viscoelastic creep data by means of a three-stage process. In stage one, a discrete retardation spectrum is fitted to the creep data using a least squares procedure, subject to the constraint that the discrete spectrum must be a specified order of polynomial function of the retardation time. In stage two, the resulting generalised Voigt model is solved numerically for an imposed step in strain, to determine the stress relaxation modulus function of time. In stage three, a discrete relaxation spectrum is fitted to the calculated stress relaxation modulus function. Although three stages are involved instead of the usual two, the procedure has been found to have certain practical advantages. These advantages make it suitable for the generation of relaxation spectra needed in viscoelastic stress analyses of solids, for example by the finite element method. In order to illustrate the proposed procedure it is applied to both artificial data and experimental creep data for poly(methyl methacrylate) at 70°C and at the glass transition.  相似文献   

10.
Poisson's ratio in viscoelastic materials is a function of time. However, recently developed waterhammer models of viscoelastic pipes consider it constant. This simplifying assumption avoids cumbersome calculations of double convolution integrals which appear if Poisson's ratio is time-dependent. The present research develops a mathematical model taking the time dependency of Poisson's ratio into account for linear viscoelastic pipes. Poisson's ratio is written in terms of relaxation function and bulk modulus which is assumed to be constant. The relaxation function is obtained from creep function given as the viscoelastic property data of pipe material. The results obtained from the present waterhammer model are compared with the experimental data for two different flow rates. The comparison reveals that with the application of the time-dependent Poisson's ratio and unsteady friction, the viscoelastic data of mechanical tests can directly be used for waterhammer analysis with less need for the calibration of the flow configuration. It was also shown that the creep curve calibrated based on the present model is closer to the actual creep curve than that calibrated based on previous models.  相似文献   

11.
In this paper, interconversion between linear viscoelastic material functions is studied emphasizing materials with relatively fast rate of relaxation. The aim of this paper is to study the whole material function determination process from a linear viscoelastic experiment to interconversion by taking into account non-ideal loading and noisiness of the data in such an experiment. No assumptions are made concerning the form of the relaxation modulus or the creep compliance. Interconversion is carried out by evaluating numerically the convolution integral. Three different yet similar approaches are studied. In numerical interconversion, the resulting matrix equation is ill-posed. Due to this, Tikhonov regularization is applied to solve the related matrix system. Numerical simulations indicate that reliable results can be obtained with proposed numerical procedures.  相似文献   

12.
A physically sound three-dimensional anisotropic formulation of the standard linear viscoelastic solid with integer or fractional order rate laws for a finite set of the pertinent internal variables is presented. It is shown that the internal variables can be expressed in terms of the strain as convolution integrals with kernels of Mittag–Leffler function type. A time integration scheme, based on the Generalized Midpoint rule together with the Grünwald algorithm for numerical fractional differentiation, for integration of the constitutive response is developed. The predictive capability of the viscoelastic model for describing creep, relaxation and damped dynamic responses is investigated both analytically and numerically. The algorithm and the present general linear viscoelastic model are implemented into the general purpose finite element code Abaqus. The algorithm is then used together with an explicit difference scheme for integration of structural responses. In numerical examples, the quasi-static and damped responses of a viscoelastic ballast material that is subjected to loads simulating the overrolling of a train are investigated.  相似文献   

13.
Different blending laws have been proposed in the literature to describe the polydispersity effect on the rheological behavior of polymer melts. In this paper predictions of linear viscoelastic properties of entangled polydisperse polymers have been derived from the double reptation mixing rule. The results in terms of the relaxation modulus, the zero shear-rate viscosity, η0, and the steady-state compliance, J e 0, have been obtained using three different relaxation functions for the monodisperse fractions, namely the Tuminello step function, the single exponential function and the BSW function. Both discrete and continuous molecular weight distributions (MWDs) have been investigated. The Generalized Exponential Function (GEX) has been considered in the continuous case. The results showed that, in systems with a large number of components, the predictions of linear viscoelastic properties mainly depend on the double reptation mixing rule assumption, while the choice of the relaxation function is not crucial. In particular, the mathematical simplicity of the Tuminello step relaxation function has allowed analytical computation of the linear viscoelastic properties in closed form. Indeed, the analytical results indicated a dependence of η0 on the MWD that could be expressed in terms of (M z/M w)0.8, in agreement with experimental results reported in the literature. In the case of J e 0, the analytical model defines a dependence on (M z/M w)5.5, i.e. as expected a strong dependence on the MWD is predicted for the steady-state compliance. Finally, dynamic moduli have been computed from the relaxation modulus and their predictions have been favorably compared with experimental results from the literature. Received: 19 July 1999/Accepted: 24 November 1999  相似文献   

14.
The connection between weak dissipativity and positive definiteness of the relaxation function as well as between monotone energy decay and complete monotonicity of the relaxation function of a linear viscoelastic system is discussed. Some theorems about the composition of completely monotonic functions relevant for polymer rheology are presented.  相似文献   

15.
利用三维Voronoi模型和有限元方法分析了胞壁材料具有粘弹特性的低密度开孔泡沫的蠕变和应力松弛行为.采用了三参量标准线性固体模型来描述胞壁材料的粘弹特性.所得结果表明.低密度开孔泡沫具有与其胞壁材料相同的松弛时间,当相对密度较低时(低于1%)开孔泡沫的松弛模量与胞壁材料的松弛模量和泡沫相对密度平方成正比.此外,计算结果还表明,低密度开孔泡沫在较小的初始应力条件下具有与其胞壁材料相同的延迟时间.其蠕变柔度与胞壁材料的蠕变柔度和泡沫相对密度平方倒数基本成正比.但随着初始应力值的增大,泡沫的延迟时间将会显著增加.  相似文献   

16.
In this paper, we make the first attempt to apply the fractal derivative to modeling viscoelastic behavior. The methodology of scaling transformation is utilized to obtain the creep modulus and relaxation compliance for the proposed fractal Maxwell and Kelvin models. Comparing with the fractional derivatives reported in the literature, the fractal derivative as a local operator has lower calculation costs and memory storage requirements. Moreover, numerical results show that the proposed fractal models require fewer parameters, have simpler mathematical expression and result in higher accuracy than the classical integer-order derivative models. Results further confirm that the proposed fractal models can characterize the creep behavior of viscoelastic materials.  相似文献   

17.
彭凡  顾勇军  马庆镇 《力学学报》2012,44(2):308-316
基于经典的对应原理, 将 Mori-Tanaka 方法等细观力学结果推广于定常温度环境下的黏弹性情形. 根据泊松比与时间呈弱相关的特点, 给出 Laplace 象空间中功能梯度材料的松弛模量和热膨胀系数, 并直接建立耦合热应变的多维黏弹性本构关系. 在此基础上, 求解黏弹性功能梯度圆柱薄壳在热环境中的轴对称弯曲蠕变变形问题. 考虑材料热物参数的温度相关性, 首先确定稳态温度场, 导出相空间中轴对称弯曲变形的解析解, 采用数值反演得到蠕变变形. 算例表明, 蠕变初期, 热环境的影响明显, 随着时间增加, 热应力松弛, 影响逐渐消失. 当圆柱薄壳受轴压时, 相比于两端固支, 两端简支的端部变形更加明显. 通过圆柱薄壳的轴对称弯曲求解, 给出体积含量呈任意分布的黏弹性功能梯度结构在热机载荷下的蠕变分析途径.   相似文献   

18.
A discrete spectra transformation technique is used for the processing and analysis of long-term stress relaxation and creep compliance data of mineral-filled polymer composites. A non-linear regression simultaneously adjusts the parameters of N discrete relaxation or retardation spectra. For small N the solution is insensitive to the choice of regression starting value sets. From the relaxation time spectrum a corresponding discrete retardation spectrum and creep compliance can be calculated using the Laplace transform and vice versa. The analysis of long-term (more than 1200 days) both relaxation and retardation experimental data demonstrates the applicability of the transformation technique. Comparisons of the experimental and calculated spectra are given. The influence of the filler amount is demonstrated.  相似文献   

19.
20.
考虑老化的混凝土粘弹性分数导数模型   总被引:10,自引:1,他引:10  
混凝土是一种具有分形结构的材料。采用分数微积分模型来研究具有分形结构材料的老化规律目前尚未见到。本文的目的是采用含分数阶导数的类标准线性体来模拟考虑老化的混凝土的蠕变和松弛规律。给出了分数导数与Abel核之间的关系。讨论了类标准线性体的蠕变柔量和松弛模量及其在考虑老化的混凝土中的应用。与传统的混凝土流变模型相比较表明,类标准线性体可以更好地同时拟合混凝土在不同龄期的蠕变和松弛曲线。而且其形式简单、统一,在计算过程中需要调整的参数很少。可以预见,类标准线性体在混凝土的结构设计和计算中将有着广泛的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号