首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
F Y Che  X X Shao  K Y Wang  Q C Xia 《Electrophoresis》1999,20(14):2930-2937
A simple and highly sensitive capillary electrophoresis (CE) method for determining the content of N-acetylneuraminic acid (Neu5Ac) in glycoproteins was developed. Neu5Ac was derivatized with 2-aminoacridone (AMAC) by reductive amination, and the AMAC-Neu5Ac adduct could be readily separated from the other 11 AMAC-derivatized neutral and acidic monosaccharides usually present in glycoproteins by CE in a 0.3 mol/L borate buffer, pH 10.5, and detected at 260 nm. The derivatization of Neu5Ac was achieved at 55 degrees C for 4 h. AMAC-Neu5Ac was stable at 20 degrees C in the dark for at least 12 h while at room temperature it spontaneously converted into another substance with a lower electrophoretic mobility, which was identified as decarboxylated AMAC-Neu5Ac by high performance liquid chromatography - ion trap mass spectrometry (HPLC-ITMS). Concentration and mass of Neu5Ac as low as 1 micromol/L and 35 fmol could be detected. The linear correlation coefficient between the ratio of peak area to migration time of AMAC-Neu5Ac and the concentration of Neu5Ac ranging from 10 to 120 micromol/L was 0.9978 (n=8). This method was successfully applied to the analysis of sialic acid in human urinary trypsin inhibitor (hu-UTI), bovine alpha1-acid glycoprotein (alpha1-AGP) and recombinant human erythropoietin (rhu-EPO). By combination of CE and HPLC-ITMS we found that N-glycolylneuraminic acid (Neu5Gc) was present in bovine alpha1-AGP in addition to Neu5Ac, with a quantity comparable to that of the latter.  相似文献   

2.
The short syntheses of each of the mono-acetates of N-acetyl-D-neuraminic acid are reported. These are important molecules for studying the mechanism and function of enzymes which utilise Neu5Ac as a substrate. However, until now these molecules were not available as pure compounds and instead had to be studied as mixtures. Neu4,5Ac(2) and Neu5,8Ac(2) were synthesised from a common precursor in 2 and 4 steps respectively, while Neu2,4Ac(2) and Neu5,7Ac(2) were synthesised in 3 and 4 steps respectively from another common precursor. Both precursors could be easily prepared in 3 steps from Neu5Ac itself. Importantly, no scrambling of the anomeric stereochemistry was detected throughout the course of these syntheses.  相似文献   

3.
A series of isotopically labeled natural substrate analogues (phenyl 5-N-acetyl-α-d-neuraminyl-(2→3)-β-d-galactopyranosyl-(1→4)-1-thio-β-d-glucopyranoside; Neu5Acα2,3LacβSPh, and the corresponding 2→6 isomer) were prepared chemoenzymatically in order to characterize, by use of multiple kinetic isotope effect (KIE) measurements, the glycosylation transition states for Vibrio cholerae sialidase-catalyzed hydrolysis reactions. The derived KIEs for Neu5Acα2,3LacβSPh for the ring oxygen ((18)V/K), leaving group oxygen ((18)V/K), C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.029 ± 0.002, 0.983 ± 0.001, 1.034 ± 0.002, and 1.043 ± 0.002, respectively. In addition, the KIEs for Neu5Acα2,6βSPh for C3-S deuterium ((D)V/K(S)) and C3-R deuterium ((D)V/K(R)) are 1.021 ± 0.001 and 1.049 ± 0.001, respectively. The glycosylation transition state structures for both Neu5Acα2,3LacβSPh and Neu5Acα2,6LacβSPh were modeled computationally using the experimental KIE values as goodness of fit criteria. Both transition states are late with largely cleaved glycosidic bonds coupled to pyranosyl ring flattening ((4)H(5) half-chair conformation) with little or no nucleophilic involvement of the enzymatic tyrosine residue. Notably, the transition state for the catalyzed hydrolysis of Neu5Acα2,6βSPh appears to incorporate a lesser degree of general-acid catalysis, relative to the 2,3-isomer.  相似文献   

4.
A simple capillary zone electrophoresis (CZE) method for the determination of the content of the major sialic acid form N-acetylneuraminic acid (Neu5Ac) in glycoproteins was established. The present method utilizes a simplified hydrolysis-purification procedure consisting of mild acid hydrolysis (25 mM trifluoroacetic acid for 2h at 80 degrees C) to release Neu5Ac and ultrafiltration on Centricon-3 membrane to remove the obtained asialoglycoproteins and other macromolecules present in biologic samples. Derivatization with benzoic anhydride at 80 degrees C for 20 min resulted in complete conversion of Neu5Ac to per-O-benzoylated Neu5Ac. CZE analysis was performed using the operating buffer 25mM phosphate, pH 3.5, containing 50% (v/v) acetonitrile as organic modifier at 30 kV, and detection of the per-O-benzoylated Neu5Ac at 231 nm. The method showed excellent repeatability (RDS<1.98%) and a linearity range from 5 microg/mL to 5mg/mL with a detection limit of 2 microM. Application of the method to microanalysis of human alpha(1)-acid glycoprotein and blood serum samples showed excellent agreement with previously published values, suggesting a high precision for the developed CZE method.  相似文献   

5.
Methyl alpha- and beta-glycosides of N-acetylneuraminic acid (Neu5Ac) and N-acetyl-3 beta-hydroxyneuraminic acid (Neu5Ac beta 3OH) (1-4) were prepared to evaluate their calcium-binding ability. (Methyl alpha-glucopyranosidonyl) alpha- and beta-, and 4-methylumbelliferyl alpha-glycosides of Neu5Ac and Neu5Ac beta 3OH (5-10) were also synthesized for the comparison of chemical and enzymatic stabilities, respectively. Methyl beta-glycosides of Neu5Ac and Neu5Ac beta 3OH, 3 and 4, respectively, showed intense calcium-binding abilities, while no such ability was observed in the corresponding alpha-glycosides, 1 and 2. The Neu5Ac beta 3OH glycosides, 6, 8, and 10, showed much stronger resistance to acidic hydrolysis and sialidase digestion than the corresponding Neu5Ac glycosides, 5, 7, and 9.  相似文献   

6.
ABSTRACT

Acid hydrolysis of colominic acid, an α-(2→8)-linked oligomer of sialic acid, yielded Neu5Ac α-(2→8) Neu5Ac (di-Neu5Ac) 2 as one of the products. Starting from this disaccharide, it was possible to prepare two potential di-Neu5Ac donors, 5 and 8, as their corresponding 2-chloro derivatives. Subsequent reaction of the donor 8 with methanol as a simple acceptor led to the α- and β-methyl Neu5Ac α-(2→8) Neu5Ac glycosides.  相似文献   

7.
Novel sialosyl donors, 4-pentenoic acid ester of N-acetylneuraminic acids (Neu5Ac) and 4-pentenyl glycoside of Neu5Ac were successfully prepared from the corresponding per-O-acetylated 2-hydroxy and 2-chloro derivatives of Neu5Ac, respectively and applied to the synthesis of O-sialosides.  相似文献   

8.
Human lung epithelial cells natively offer terminal N‐acetylneuraminic acid (Neu5Ac) α(2→6)‐linked to galactose (Gal) as binding sites for influenza virus hemagglutinin. N‐Glycolylneuraminic acid (Neu5Gc) in place of Neu5Ac is known to affect hemagglutinin binding in other species. Not normally generated by humans, Neu5Gc may find its way to human cells from dietary sources. To compare their influence in influenza virus infection, six trisaccharides with Neu5Ac or Neu5Gc α(2→6) linked to Gal and with different reducing end sugar units were prepared using one‐pot assembly and divergent transformation. The sugar assembly made use of an N‐phthaloyl‐protected sialyl imidate for chemoselective activation and α‐stereoselective coupling with a thiogalactoside. Assessment of cytopathic effect showed that the Neu5Gc‐capped trisaccharides inhibited the viral infection better than their Neu5Ac counterparts.  相似文献   

9.
A method for analysing sialyl oligosaccharides from bovine colostrum using high-performance liquid chromatography-electrospray ionisation-mass spectrometry (HPLC-ESI-MS) is described. Under positive ionisation mode, mass spectra of alpha2-3 and alpha2-6 linkages were different, and the former produced a prominent B2 (or B3 in disialyl lactose) mass fragment. This fragment was absent from mass spectra with alpha2-6 linkages. Two sialyl oligosaccharides, which have not been reported previously, were tentatively identified. One comprises a N-acetyl neuraminic acid (Neu5Ac), two hexoses (Hex), and one N-acetyl hexosamine (HexNAc) residue ((Neu5Ac)1 (Hex)2 (HexNAc)1), and the other comprises one Neu5Ac and one Hex residue ((Neu5Ac)1(Hex)1).  相似文献   

10.
In the present study, the hydroxyl groups at the C4 and C7 positions of sialic acid and C6 position of galactose in Neu5Acα(2–3)Gal (N23G) and the hydroxyl groups at the C8 position of sialic acid and C3 and C4 positions of galactose in Neu5Acα(2–6)Gal (N26G) were substituted with fluorine atoms, respectively. Molecular dynamics simulations of 100 ns duration were carried out to investigate the structural and dynamical behavior of H1 bound with the tri-fluorinated N23G and N26G (FN23G and FN26G). Based on energy analysis, it was concluded that FN26G should be a better binder for hemagglutinin (H1) than FN23G and it might act as an inhibitor for influenza.  相似文献   

11.
N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the dominant sialic acids (Sia) in mammals usually found in the non-reducing terminal of oligosaccharide side chains in glycoproteins and glycolipids. Their expression and distribution pattern have been correlated both with the malignant phenotype and tumor grade of human cancers. The aim of the present study was to determine by reversed-phase HPLC method the amounts of Neu5Ac and Neu5Gc as well as their distribution among the culture media and cell surface of MG-63 and Saos-2 human osteosarcoma cell lines of high and low metastatic potential. It was determined that MG-63 cells produce up to 5-fold more total sialic acid as compared with the Saos 2 cells. Neu5Ac accounts for ca 60% of the total sialic acids secreted by MG-63 cells, whereas Neu5Gc is the predominant sialic acid present on the MG-63 cell membrane. Saos 2 cells secrete considerable amounts of Neu5Ac to culture media. The obtained data indicate that the human osteosarcoma cells express both forms of Sia-containing glycoconjugates; the differences in the amounts of each of the two major Sia types and their distribution may be related to their differences in morphology and/or metastatic potentials.  相似文献   

12.
Sialic acids containing glycoconjugates are very common in human neoplasias and their expression frequently correlates with malignant phenotype and the tumor grade. The majority of tumor markers containing sialic acids in man involve changes in the amount of total sialic acids and in the presence of the two main sialic acid types, Neu5Ac and Neu5Gc, and their derivatives. The aim of the present study was to examine whether malignant mesothelioma cell lines synthesize sialic acid containing glycoconjugates at both the extracellular and cell membrane levels and particularly whether the type and the content of Neu5Ac and Neu5Gc are of biological importance for mesothelioma cell differentiation and evaluation of its prognosis. The study was performed in three human malignant mesothelioma cell lines, two with a fibroblast like phenotype (STAV-FCS and Vester) and one of epithelial differentiation (STAV-AB), which developed from the pleural effusions of patients with malignant mesothelioma and in one human adenocarcinoma cell line (Wart). Neu5Ac and Neu5Gc were determined following a mild hydrolysis step and a sample clean-up procedure. The determination was performed by reversed-phase HPLC after the NeuAc and NeuGc had been converted to per-O-benzoylated derivatives. It was found that Neu5Gc is the major sialic acid in the culture media of all cell lines examined. Molar ratios of Neu5Ac to Neu5Gc showed that Neu5Gc is the predominant sialic acid in the culture medium of the fibroblast-like mesothelioma cells. Neu5Ac is almost undetectable in the cell membrane, whereas Neu5Gc is present in considerable amounts. The obtained results suggest that the type and the content of Neu5Ac and Neu5Gc in culture media are of biological importance for mesothelioma cell differentiation and may be of value in the evaluation of prognosis.  相似文献   

13.
2-(Perfluorohexyl)ethoxymethyl chloride was prepared as a novel fluorous protecting reagent. Neu5Ac aldolase-catalyzed chemoenzymatic transformation of N-acetyl-D-mannosamine to Neu5Ac derivatives was achieved successfully by using the fluorous reagent not only for hydroxy group protection but also for fluorous tagging. This chemoenzymatic method was applied to the synthesis of 2-deoxy-2,3-didehydrosialic acid 1 known as a potent sialidase inhibitor.  相似文献   

14.
The biosynthesis of sialic acid (Neu5Ac) leads to the intracellular production of cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac), the active sialic acid donor to nascent glycans (glycoproteins and glycolipids) in the Golgi. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase myopathy is a rare autosomal recessive muscular disease characterized by progressive muscle weakness and atrophy. To quantify the intracellular levels of CMP-Neu5Ac as well as N-acetylmannosamine (ManNAc) and Neu5Ac in human leukocytes, we developed and validated robust liquid chromatography–tandem mass spectrometry methods. A fit-for-purpose approach was implemented for method validation. Hydrophilic interaction chromatography was used to retain three hydrophilic analytes. The human leukocyte pellets were lysed and extracted in a methanol–water mixture and the leukocyte extract was used for LC–MS/MS analysis. The lower limits of quantitation for ManNAc, Neu5Ac and CMP-Neu5Ac were 25.0, 25.0 and 10.0 ng/ml, respectively. These validated methods were applied to a clinical study.  相似文献   

15.
Methyl 2,3,4-tri-O-benzyl-α,-D-glucopyranoside has been converted into Neu5Ac α(2-6)Glu and Neu5Ac β (2-6)Glu derivatives, using an intramolecular oximercuration-demercuration reaction.  相似文献   

16.
Borates are known to interact with carbohydrate moieties expressed on the surface of biological membranes of a variety of cells, viruses, bacteria, and fungi. This study revealed the anomalous binding profile of borate in aqueous solution with N-acetylneuraminic acid (Neu5Ac, sialic acid) as a potential receptor site on the surfaces of biological membranes using (11)B, (1)H, (13)C, and (15)N nuclear magnetic resonance spectroscopies. 3-(Propionamido)phenylboronic acid (PAPBA) was chosen as the model borate compound. The equilibrium constant (K) for Neu5Ac binding to PAPBA was compared with those for glucose, mannose, and galactose, which are the major carbohydrate constituents of glycoproteins and glycolipids expressed on biological membranes. In the Neu5Ac/PAPBA system, the unusual pH dependency of the K values, a decrease in K with increasing pH, was observed, suggesting the formation of a trigonal-formed complex stabilized by the coordination of an amide group of Neu5Ac at the C-5 position to the boron atom, forming intramolecular B-N or B-O bonding. Furthermore, the anomalously high complexing ability at physiological pH 7.4 was confirmed for this system, with the K value 37.6 which is approximately 7 times higher than that for glucose. This exceptionally high value of K at physiological pH, compared to those of other sugars, strongly suggests that the boronic acid selectively recognizes the Neu5Ac residues of the glycosylated components including glycoproteins and gangliosides existing on the surface of the biological membranes.  相似文献   

17.
Sialidases or neuraminidases catalyze the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates. Despite successes in developing potent inhibitors specifically against influenza virus neuraminidases, the progress in designing and synthesizing selective inhibitors against bacterial and human sialidases has been slow. Guided by sialidase substrate specificity studies and sialidase crystal structural analysis, a number of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA or Neu5Ac2en) analogues with modifications at C9 or at both C5 and C9 were synthesized. Inhibition studies of various bacterial sialidases and human cytosolic sialidase NEU2 revealed that Neu5Gc9N(3)2en and Neu5AcN(3)9N(3)2en are selective inhibitors against V. cholerae sialidase and human NEU2, respectively.  相似文献   

18.
A multinuclear NMR study of the interaction between phenylboronic acid (PBA) and sialic acid (Neu5 Ac) has been performed. The latter compound is known to be overexpressed on the cell surface of tumor cells. The results of this investigation suggest that the binding of PBA to sialic acid is pH dependent. 17O NMR experiments with glycolic acid as the model compound prove that an interaction at the alpha-hydroxycarboxylate occurs at pH < 9, while a study with threonic and erythronic acids shows that the PBA group interacts selectively with the vicinal diol functions at higher pH. Similarly, Neu5 Ac binds PBA through its alpha-hydroxycarboxylate at low pH (< 9) and through its glycerol side chain at higher pH values. The conditional stability constant of the phenylboronate ester at pH 7.4 is 11.4. On cell surfaces, sialic acid is connected to the neighboring sugar unit through the 2-hydroxy group. To mimic this the 2-alpha-O-methyl derivative of Neu5 Ac was included in this study. The erythro configuration of the hydroxy substituents prevents stable-complex formation at positions C7 and C8 and, consequently, the strongest interaction is observed at positions C8 and C9, leading to a five-membered 2-boron-1,3-dioxalate. In addition, a relatively small amount of the C7-C9 six-membered complex was observed. Molecular modeling studies confirm that the C8-C9 boronate complex has the lowest energy.  相似文献   

19.
《Chemistry & biology》1996,3(2):97-104
Background: Influenza viruses use hemagglutinin (HA) arrays to bind to sialic acid moieties on the surface of cells; crosslinking of erythrocytes by this mechanism leads to hemagglutination. A number of synthetic polymers containing multiple sialic acid (Neu5Ac) groups as side chains are potent inhibitors of this process. Inhibition may be due to two mechanisms: polyvalent binding of the inhibitor's multiple Neu5Ac side chains to multiple HA sites on the viral surface, or steric stabilization of the viral particle by a layer of the adsorbed, water-swollen polymer, which prevents adhesion to the erythrocyte. The balance between these two effects is not yet known.Results: Polyacrylamides with multiple C-sialosides (PA(Neu5Ac)) were 2–20 fold more effective as inhibitors of virally mediated hemagglutination when assayed in the presence of Neu2en-NH2, a potent monomeric inhibitor of influenza neuraminidase (NA). The ability of monomeric inhibitors of NA to enhance the inhibition of hemagglutination in this assay correlated with the affinity of the monomer for NA.Conclusions: We propose that inhibitors of NA act by competing with the C-sialosides of PA(Neu5Ac) for binding to the active sites of the NA. Competitive displacement of Neu5Ac causes an expansion of the layer of polymeric gel adsorbed to the virus, enhancing its inhibitory effect. This study provides an example of synergy between two ligands directed toward the active sites of two different proteins, and reinforces the conclusion that steric stabilization is important for the activity of polyvalent inhibitors.  相似文献   

20.
Streptococcus penumoniae is a major human pathogen responsible for respiratory tract infections, septicemia, and meningitis and continues to produce numerous cases of disease with relatively high mortalities. S. pneumoniae encodes up to three sialidases, NanA, NanB, and NanC, that have been implicated in pathogenesis and are potential drug targets. NanA has been shown to be a promiscuous sialidase, hydrolyzing the removal of Neu5Ac from a variety of glycoconjugates with retention of configuration at the anomeric center, as we confirm by NMR. NanB is an intramolecular trans-sialidase producing 2,7-anhydro-Neu5Ac selectively from α2,3-sialosides. Here, we show that the first product of NanC is 2-deoxy-2,3-didehydro-N-acetylneuraminic acid (Neu5Ac2en) that can be slowly hydrated by the enzyme to Neu5Ac. We propose that the three pneumococcal sialidases share a common catalytic mechanism up to the final product formation step, and speculate on the roles of the enzymes in the lifecycle of the bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号